Spaces:
Paused
Paused
Update videoretalking/models/LNet.py
Browse files- videoretalking/models/LNet.py +138 -138
videoretalking/models/LNet.py
CHANGED
@@ -1,139 +1,139 @@
|
|
1 |
-
import functools
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
|
5 |
-
from models.transformer import RETURNX, Transformer
|
6 |
-
from models.base_blocks import Conv2d, LayerNorm2d, FirstBlock2d, DownBlock2d, UpBlock2d, \
|
7 |
-
FFCADAINResBlocks, Jump, FinalBlock2d
|
8 |
-
|
9 |
-
|
10 |
-
class Visual_Encoder(nn.Module):
|
11 |
-
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
12 |
-
super(Visual_Encoder, self).__init__()
|
13 |
-
self.layers = layers
|
14 |
-
self.first_inp = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
15 |
-
self.first_ref = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
16 |
-
for i in range(layers):
|
17 |
-
in_channels = min(ngf*(2**i), img_f)
|
18 |
-
out_channels = min(ngf*(2**(i+1)), img_f)
|
19 |
-
model_ref = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
20 |
-
model_inp = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
21 |
-
if i < 2:
|
22 |
-
ca_layer = RETURNX()
|
23 |
-
else:
|
24 |
-
ca_layer = Transformer(2**(i+1) * ngf,2,4,ngf,ngf*4)
|
25 |
-
setattr(self, 'ca' + str(i), ca_layer)
|
26 |
-
setattr(self, 'ref_down' + str(i), model_ref)
|
27 |
-
setattr(self, 'inp_down' + str(i), model_inp)
|
28 |
-
self.output_nc = out_channels * 2
|
29 |
-
|
30 |
-
def forward(self, maskGT, ref):
|
31 |
-
x_maskGT, x_ref = self.first_inp(maskGT), self.first_ref(ref)
|
32 |
-
out=[x_maskGT]
|
33 |
-
for i in range(self.layers):
|
34 |
-
model_ref = getattr(self, 'ref_down'+str(i))
|
35 |
-
model_inp = getattr(self, 'inp_down'+str(i))
|
36 |
-
ca_layer = getattr(self, 'ca'+str(i))
|
37 |
-
x_maskGT, x_ref = model_inp(x_maskGT), model_ref(x_ref)
|
38 |
-
x_maskGT = ca_layer(x_maskGT, x_ref)
|
39 |
-
if i < self.layers - 1:
|
40 |
-
out.append(x_maskGT)
|
41 |
-
else:
|
42 |
-
out.append(torch.cat([x_maskGT, x_ref], dim=1)) # concat ref features !
|
43 |
-
return out
|
44 |
-
|
45 |
-
|
46 |
-
class Decoder(nn.Module):
|
47 |
-
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
48 |
-
super(Decoder, self).__init__()
|
49 |
-
self.layers = layers
|
50 |
-
for i in range(layers)[::-1]:
|
51 |
-
if i == layers-1:
|
52 |
-
in_channels = ngf*(2**(i+1)) * 2
|
53 |
-
else:
|
54 |
-
in_channels = min(ngf*(2**(i+1)), img_f)
|
55 |
-
out_channels = min(ngf*(2**i), img_f)
|
56 |
-
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
57 |
-
res = FFCADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
|
58 |
-
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
|
59 |
-
|
60 |
-
setattr(self, 'up' + str(i), up)
|
61 |
-
setattr(self, 'res' + str(i), res)
|
62 |
-
setattr(self, 'jump' + str(i), jump)
|
63 |
-
|
64 |
-
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'sigmoid')
|
65 |
-
self.output_nc = out_channels
|
66 |
-
|
67 |
-
def forward(self, x, z):
|
68 |
-
out = x.pop()
|
69 |
-
for i in range(self.layers)[::-1]:
|
70 |
-
res_model = getattr(self, 'res' + str(i))
|
71 |
-
up_model = getattr(self, 'up' + str(i))
|
72 |
-
jump_model = getattr(self, 'jump' + str(i))
|
73 |
-
out = res_model(out, z)
|
74 |
-
out = up_model(out)
|
75 |
-
out = jump_model(x.pop()) + out
|
76 |
-
out_image = self.final(out)
|
77 |
-
return out_image
|
78 |
-
|
79 |
-
|
80 |
-
class LNet(nn.Module):
|
81 |
-
def __init__(
|
82 |
-
self,
|
83 |
-
image_nc=3,
|
84 |
-
descriptor_nc=512,
|
85 |
-
layer=3,
|
86 |
-
base_nc=64,
|
87 |
-
max_nc=512,
|
88 |
-
num_res_blocks=9,
|
89 |
-
use_spect=True,
|
90 |
-
encoder=Visual_Encoder,
|
91 |
-
decoder=Decoder
|
92 |
-
):
|
93 |
-
super(LNet, self).__init__()
|
94 |
-
|
95 |
-
nonlinearity = nn.LeakyReLU(0.1)
|
96 |
-
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
97 |
-
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
98 |
-
self.descriptor_nc = descriptor_nc
|
99 |
-
|
100 |
-
self.encoder = encoder(image_nc, base_nc, max_nc, layer, **kwargs)
|
101 |
-
self.decoder = decoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
|
102 |
-
self.audio_encoder = nn.Sequential(
|
103 |
-
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
104 |
-
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
105 |
-
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
106 |
-
|
107 |
-
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
108 |
-
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
109 |
-
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
110 |
-
|
111 |
-
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
112 |
-
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
113 |
-
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
114 |
-
|
115 |
-
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
116 |
-
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
117 |
-
|
118 |
-
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
119 |
-
Conv2d(512, descriptor_nc, kernel_size=1, stride=1, padding=0),
|
120 |
-
)
|
121 |
-
|
122 |
-
def forward(self, audio_sequences, face_sequences):
|
123 |
-
B = audio_sequences.size(0)
|
124 |
-
input_dim_size = len(face_sequences.size())
|
125 |
-
if input_dim_size > 4:
|
126 |
-
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
127 |
-
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
|
128 |
-
cropped, ref = torch.split(face_sequences, 3, dim=1)
|
129 |
-
|
130 |
-
vis_feat = self.encoder(cropped, ref)
|
131 |
-
audio_feat = self.audio_encoder(audio_sequences)
|
132 |
-
_outputs = self.decoder(vis_feat, audio_feat)
|
133 |
-
|
134 |
-
if input_dim_size > 4:
|
135 |
-
_outputs = torch.split(_outputs, B, dim=0)
|
136 |
-
outputs = torch.stack(_outputs, dim=2)
|
137 |
-
else:
|
138 |
-
outputs = _outputs
|
139 |
return outputs
|
|
|
1 |
+
import functools
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from videoretalking.models.transformer import RETURNX, Transformer
|
6 |
+
from videoretalking.models.base_blocks import Conv2d, LayerNorm2d, FirstBlock2d, DownBlock2d, UpBlock2d, \
|
7 |
+
FFCADAINResBlocks, Jump, FinalBlock2d
|
8 |
+
|
9 |
+
|
10 |
+
class Visual_Encoder(nn.Module):
|
11 |
+
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
12 |
+
super(Visual_Encoder, self).__init__()
|
13 |
+
self.layers = layers
|
14 |
+
self.first_inp = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
15 |
+
self.first_ref = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
16 |
+
for i in range(layers):
|
17 |
+
in_channels = min(ngf*(2**i), img_f)
|
18 |
+
out_channels = min(ngf*(2**(i+1)), img_f)
|
19 |
+
model_ref = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
20 |
+
model_inp = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
21 |
+
if i < 2:
|
22 |
+
ca_layer = RETURNX()
|
23 |
+
else:
|
24 |
+
ca_layer = Transformer(2**(i+1) * ngf,2,4,ngf,ngf*4)
|
25 |
+
setattr(self, 'ca' + str(i), ca_layer)
|
26 |
+
setattr(self, 'ref_down' + str(i), model_ref)
|
27 |
+
setattr(self, 'inp_down' + str(i), model_inp)
|
28 |
+
self.output_nc = out_channels * 2
|
29 |
+
|
30 |
+
def forward(self, maskGT, ref):
|
31 |
+
x_maskGT, x_ref = self.first_inp(maskGT), self.first_ref(ref)
|
32 |
+
out=[x_maskGT]
|
33 |
+
for i in range(self.layers):
|
34 |
+
model_ref = getattr(self, 'ref_down'+str(i))
|
35 |
+
model_inp = getattr(self, 'inp_down'+str(i))
|
36 |
+
ca_layer = getattr(self, 'ca'+str(i))
|
37 |
+
x_maskGT, x_ref = model_inp(x_maskGT), model_ref(x_ref)
|
38 |
+
x_maskGT = ca_layer(x_maskGT, x_ref)
|
39 |
+
if i < self.layers - 1:
|
40 |
+
out.append(x_maskGT)
|
41 |
+
else:
|
42 |
+
out.append(torch.cat([x_maskGT, x_ref], dim=1)) # concat ref features !
|
43 |
+
return out
|
44 |
+
|
45 |
+
|
46 |
+
class Decoder(nn.Module):
|
47 |
+
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
48 |
+
super(Decoder, self).__init__()
|
49 |
+
self.layers = layers
|
50 |
+
for i in range(layers)[::-1]:
|
51 |
+
if i == layers-1:
|
52 |
+
in_channels = ngf*(2**(i+1)) * 2
|
53 |
+
else:
|
54 |
+
in_channels = min(ngf*(2**(i+1)), img_f)
|
55 |
+
out_channels = min(ngf*(2**i), img_f)
|
56 |
+
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
57 |
+
res = FFCADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
|
58 |
+
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
|
59 |
+
|
60 |
+
setattr(self, 'up' + str(i), up)
|
61 |
+
setattr(self, 'res' + str(i), res)
|
62 |
+
setattr(self, 'jump' + str(i), jump)
|
63 |
+
|
64 |
+
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'sigmoid')
|
65 |
+
self.output_nc = out_channels
|
66 |
+
|
67 |
+
def forward(self, x, z):
|
68 |
+
out = x.pop()
|
69 |
+
for i in range(self.layers)[::-1]:
|
70 |
+
res_model = getattr(self, 'res' + str(i))
|
71 |
+
up_model = getattr(self, 'up' + str(i))
|
72 |
+
jump_model = getattr(self, 'jump' + str(i))
|
73 |
+
out = res_model(out, z)
|
74 |
+
out = up_model(out)
|
75 |
+
out = jump_model(x.pop()) + out
|
76 |
+
out_image = self.final(out)
|
77 |
+
return out_image
|
78 |
+
|
79 |
+
|
80 |
+
class LNet(nn.Module):
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
image_nc=3,
|
84 |
+
descriptor_nc=512,
|
85 |
+
layer=3,
|
86 |
+
base_nc=64,
|
87 |
+
max_nc=512,
|
88 |
+
num_res_blocks=9,
|
89 |
+
use_spect=True,
|
90 |
+
encoder=Visual_Encoder,
|
91 |
+
decoder=Decoder
|
92 |
+
):
|
93 |
+
super(LNet, self).__init__()
|
94 |
+
|
95 |
+
nonlinearity = nn.LeakyReLU(0.1)
|
96 |
+
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
97 |
+
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
98 |
+
self.descriptor_nc = descriptor_nc
|
99 |
+
|
100 |
+
self.encoder = encoder(image_nc, base_nc, max_nc, layer, **kwargs)
|
101 |
+
self.decoder = decoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
|
102 |
+
self.audio_encoder = nn.Sequential(
|
103 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
104 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
105 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
106 |
+
|
107 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
108 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
109 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
110 |
+
|
111 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
112 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
113 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
114 |
+
|
115 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
116 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
117 |
+
|
118 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
119 |
+
Conv2d(512, descriptor_nc, kernel_size=1, stride=1, padding=0),
|
120 |
+
)
|
121 |
+
|
122 |
+
def forward(self, audio_sequences, face_sequences):
|
123 |
+
B = audio_sequences.size(0)
|
124 |
+
input_dim_size = len(face_sequences.size())
|
125 |
+
if input_dim_size > 4:
|
126 |
+
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
127 |
+
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
|
128 |
+
cropped, ref = torch.split(face_sequences, 3, dim=1)
|
129 |
+
|
130 |
+
vis_feat = self.encoder(cropped, ref)
|
131 |
+
audio_feat = self.audio_encoder(audio_sequences)
|
132 |
+
_outputs = self.decoder(vis_feat, audio_feat)
|
133 |
+
|
134 |
+
if input_dim_size > 4:
|
135 |
+
_outputs = torch.split(_outputs, B, dim=0)
|
136 |
+
outputs = torch.stack(_outputs, dim=2)
|
137 |
+
else:
|
138 |
+
outputs = _outputs
|
139 |
return outputs
|