Spaces:
Paused
Paused
Update app_parallel.py
Browse files- app_parallel.py +21 -15
app_parallel.py
CHANGED
@@ -176,11 +176,11 @@ def custom_cleanup(temp_dir):
|
|
176 |
import gc
|
177 |
gc.collect()
|
178 |
|
179 |
-
def get_audio_duration(audio_path):
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
|
185 |
|
186 |
def generate_audio(voice_cloning, voice_gender, text_prompt):
|
@@ -227,10 +227,10 @@ def generate_audio(voice_cloning, voice_gender, text_prompt):
|
|
227 |
temp_file.write(chunk)
|
228 |
driven_audio_path = temp_file.name
|
229 |
print('driven_audio_path',driven_audio_path)
|
230 |
-
audio_duration = get_audio_duration(driven_audio_path)
|
231 |
-
print('Total Audio Duration in seconds',audio_duration)
|
232 |
|
233 |
-
return driven_audio_path
|
234 |
|
235 |
def run_preprocessing(args):
|
236 |
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting
|
@@ -262,20 +262,26 @@ def openai_chat_avatar(text_prompt):
|
|
262 |
)
|
263 |
return response
|
264 |
|
265 |
-
def split_audio(audio_path, chunk_duration):
|
266 |
audio_clip = mp.AudioFileClip(audio_path)
|
267 |
total_duration = audio_clip.duration
|
268 |
-
|
|
|
|
|
269 |
audio_chunks = []
|
270 |
-
for
|
|
|
271 |
end_time = min(start_time + chunk_duration, total_duration)
|
272 |
chunk = audio_clip.subclip(start_time, end_time)
|
|
|
|
|
273 |
with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file:
|
274 |
chunk_path = temp_file.name
|
275 |
-
chunk.write_audiofile(chunk_path)
|
276 |
audio_chunks.append((start_time, chunk_path))
|
277 |
|
278 |
-
|
|
|
279 |
|
280 |
# Generator function to yield chunk results as they are processed
|
281 |
def generate_chunks(audio_chunks, preprocessed_data, args):
|
@@ -344,7 +350,7 @@ def parallel_processing():
|
|
344 |
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
|
345 |
print(source_image_path)
|
346 |
|
347 |
-
driven_audio_path
|
348 |
|
349 |
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
|
350 |
result_folder = os.path.join(save_dir, "results")
|
@@ -355,7 +361,7 @@ def parallel_processing():
|
|
355 |
preprocessed_data = run_preprocessing(args)
|
356 |
chunk_duration = 3
|
357 |
print(f"Splitting the audio into {chunk_duration}-second chunks...")
|
358 |
-
audio_chunks = split_audio(driven_audio_path, chunk_duration=chunk_duration)
|
359 |
print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}")
|
360 |
|
361 |
os.makedirs('lives', exist_ok=True)
|
|
|
176 |
import gc
|
177 |
gc.collect()
|
178 |
|
179 |
+
# def get_audio_duration(audio_path):
|
180 |
+
# audio_clip = mp.AudioFileClip(audio_path)
|
181 |
+
# duration_in_seconds = audio_clip.duration
|
182 |
+
# audio_clip.close() # Don't forget to close the clip
|
183 |
+
# return duration_in_seconds
|
184 |
|
185 |
|
186 |
def generate_audio(voice_cloning, voice_gender, text_prompt):
|
|
|
227 |
temp_file.write(chunk)
|
228 |
driven_audio_path = temp_file.name
|
229 |
print('driven_audio_path',driven_audio_path)
|
230 |
+
# audio_duration = get_audio_duration(driven_audio_path)
|
231 |
+
# print('Total Audio Duration in seconds',audio_duration)
|
232 |
|
233 |
+
return driven_audio_path
|
234 |
|
235 |
def run_preprocessing(args):
|
236 |
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting
|
|
|
262 |
)
|
263 |
return response
|
264 |
|
265 |
+
def split_audio(audio_path, TEMP_DIR, chunk_duration):
|
266 |
audio_clip = mp.AudioFileClip(audio_path)
|
267 |
total_duration = audio_clip.duration
|
268 |
+
print("split_audio duration:",total_duration)
|
269 |
+
number_of_chunks = math.ceil(total_duration / chunk_duration)
|
270 |
+
print("Number of audio chunks:",number_of_chunks)
|
271 |
audio_chunks = []
|
272 |
+
for i in range(number_of_chunks):
|
273 |
+
start_time = i * chunk_duration
|
274 |
end_time = min(start_time + chunk_duration, total_duration)
|
275 |
chunk = audio_clip.subclip(start_time, end_time)
|
276 |
+
|
277 |
+
# Create a temporary file for the chunk
|
278 |
with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file:
|
279 |
chunk_path = temp_file.name
|
280 |
+
chunk.write_audiofile(chunk_path) # Specify codec if needed
|
281 |
audio_chunks.append((start_time, chunk_path))
|
282 |
|
283 |
+
audio_clip.close() # Close the audio clip to release resources
|
284 |
+
return audio_chunks, total_duration
|
285 |
|
286 |
# Generator function to yield chunk results as they are processed
|
287 |
def generate_chunks(audio_chunks, preprocessed_data, args):
|
|
|
350 |
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
|
351 |
print(source_image_path)
|
352 |
|
353 |
+
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt)
|
354 |
|
355 |
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
|
356 |
result_folder = os.path.join(save_dir, "results")
|
|
|
361 |
preprocessed_data = run_preprocessing(args)
|
362 |
chunk_duration = 3
|
363 |
print(f"Splitting the audio into {chunk_duration}-second chunks...")
|
364 |
+
audio_chunks, audio_duration = split_audio(driven_audio_path, TEMP_DIR, chunk_duration=chunk_duration)
|
365 |
print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}")
|
366 |
|
367 |
os.makedirs('lives', exist_ok=True)
|