|
"""Model class template
|
|
|
|
This module provides a template for users to implement custom models.
|
|
You can specify '--model template' to use this model.
|
|
The class name should be consistent with both the filename and its model option.
|
|
The filename should be <model>_dataset.py
|
|
The class name should be <Model>Dataset.py
|
|
It implements a simple image-to-image translation baseline based on regression loss.
|
|
Given input-output pairs (data_A, data_B), it learns a network netG that can minimize the following L1 loss:
|
|
min_<netG> ||netG(data_A) - data_B||_1
|
|
You need to implement the following functions:
|
|
<modify_commandline_options>: Add model-specific options and rewrite default values for existing options.
|
|
<__init__>: Initialize this model class.
|
|
<set_input>: Unpack input data and perform data pre-processing.
|
|
<forward>: Run forward pass. This will be called by both <optimize_parameters> and <test>.
|
|
<optimize_parameters>: Update network weights; it will be called in every training iteration.
|
|
"""
|
|
import numpy as np
|
|
import torch
|
|
from .base_model import BaseModel
|
|
from . import networks
|
|
|
|
|
|
class TemplateModel(BaseModel):
|
|
@staticmethod
|
|
def modify_commandline_options(parser, is_train=True):
|
|
"""Add new model-specific options and rewrite default values for existing options.
|
|
|
|
Parameters:
|
|
parser -- the option parser
|
|
is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options.
|
|
|
|
Returns:
|
|
the modified parser.
|
|
"""
|
|
parser.set_defaults(dataset_mode='aligned')
|
|
if is_train:
|
|
parser.add_argument('--lambda_regression', type=float, default=1.0, help='weight for the regression loss')
|
|
|
|
return parser
|
|
|
|
def __init__(self, opt):
|
|
"""Initialize this model class.
|
|
|
|
Parameters:
|
|
opt -- training/test options
|
|
|
|
A few things can be done here.
|
|
- (required) call the initialization function of BaseModel
|
|
- define loss function, visualization images, model names, and optimizers
|
|
"""
|
|
BaseModel.__init__(self, opt)
|
|
|
|
self.loss_names = ['loss_G']
|
|
|
|
self.visual_names = ['data_A', 'data_B', 'output']
|
|
|
|
|
|
self.model_names = ['G']
|
|
|
|
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, gpu_ids=self.gpu_ids)
|
|
if self.isTrain:
|
|
|
|
|
|
self.criterionLoss = torch.nn.L1Loss()
|
|
|
|
|
|
self.optimizer = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
|
|
self.optimizers = [self.optimizer]
|
|
|
|
|
|
|
|
def set_input(self, input):
|
|
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
|
|
|
|
Parameters:
|
|
input: a dictionary that contains the data itself and its metadata information.
|
|
"""
|
|
AtoB = self.opt.direction == 'AtoB'
|
|
self.data_A = input['A' if AtoB else 'B'].to(self.device)
|
|
self.data_B = input['B' if AtoB else 'A'].to(self.device)
|
|
self.image_paths = input['A_paths' if AtoB else 'B_paths']
|
|
|
|
def forward(self):
|
|
"""Run forward pass. This will be called by both functions <optimize_parameters> and <test>."""
|
|
self.output = self.netG(self.data_A)
|
|
|
|
def backward(self):
|
|
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
|
|
|
|
|
|
self.loss_G = self.criterionLoss(self.output, self.data_B) * self.opt.lambda_regression
|
|
self.loss_G.backward()
|
|
|
|
def optimize_parameters(self):
|
|
"""Update network weights; it will be called in every training iteration."""
|
|
self.forward()
|
|
self.optimizer.zero_grad()
|
|
self.backward()
|
|
self.optimizer.step()
|
|
|