|
|
|
import cv2
|
|
import numpy as np
|
|
from src.face3d.models.bfm import ParametricFaceModel
|
|
from src.face3d.models.facerecon_model import FaceReconModel
|
|
import torch
|
|
import subprocess, platform
|
|
import scipy.io as scio
|
|
from tqdm import tqdm
|
|
|
|
|
|
def gen_composed_video(args, device, first_frame_coeff, coeff_path, audio_path, save_path, exp_dim=64):
|
|
|
|
coeff_first = scio.loadmat(first_frame_coeff)['full_3dmm']
|
|
|
|
coeff_pred = scio.loadmat(coeff_path)['coeff_3dmm']
|
|
|
|
coeff_full = np.repeat(coeff_first, coeff_pred.shape[0], axis=0)
|
|
|
|
coeff_full[:, 80:144] = coeff_pred[:, 0:64]
|
|
coeff_full[:, 224:227] = coeff_pred[:, 64:67]
|
|
coeff_full[:, 254:] = coeff_pred[:, 67:]
|
|
|
|
tmp_video_path = '/tmp/face3dtmp.mp4'
|
|
|
|
facemodel = FaceReconModel(args)
|
|
|
|
video = cv2.VideoWriter(tmp_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 25, (224, 224))
|
|
|
|
for k in tqdm(range(coeff_pred.shape[0]), 'face3d rendering:'):
|
|
cur_coeff_full = torch.tensor(coeff_full[k:k+1], device=device)
|
|
|
|
facemodel.forward(cur_coeff_full, device)
|
|
|
|
predicted_landmark = facemodel.pred_lm
|
|
predicted_landmark = predicted_landmark.cpu().numpy().squeeze()
|
|
|
|
rendered_img = facemodel.pred_face
|
|
rendered_img = 255. * rendered_img.cpu().numpy().squeeze().transpose(1,2,0)
|
|
out_img = rendered_img[:, :, :3].astype(np.uint8)
|
|
|
|
video.write(np.uint8(out_img[:,:,::-1]))
|
|
|
|
video.release()
|
|
|
|
command = 'ffmpeg -v quiet -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_path, tmp_video_path, save_path)
|
|
subprocess.call(command, shell=platform.system() != 'Windows')
|
|
|
|
|