|
from flask import Flask, request, jsonify, send_from_directory |
|
import torch |
|
import shutil |
|
import os |
|
import sys |
|
from src.utils.preprocess import CropAndExtract |
|
from src.test_audio2coeff import Audio2Coeff |
|
from src.facerender.animate import AnimateFromCoeff |
|
from src.generate_batch import get_data |
|
from src.generate_facerender_batch import get_facerender_data |
|
import tempfile |
|
from openai import OpenAI |
|
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings |
|
from flask_cors import CORS, cross_origin |
|
|
|
import uuid |
|
import time |
|
from PIL import Image |
|
import moviepy.editor as mp |
|
import requests |
|
import json |
|
import pickle |
|
import re |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AnimationConfig: |
|
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded): |
|
self.driven_audio = driven_audio_path |
|
self.source_image = source_image_path |
|
self.ref_eyeblink = None |
|
self.ref_pose = ref_pose_video_path |
|
self.checkpoint_dir = './checkpoints' |
|
self.result_dir = result_folder |
|
self.pose_style = pose_style |
|
self.batch_size = 8 |
|
self.expression_scale = expression_scale |
|
self.input_yaw = None |
|
self.input_pitch = None |
|
self.input_roll = None |
|
self.enhancer = enhancer |
|
self.background_enhancer = None |
|
self.cpu = False |
|
self.face3dvis = False |
|
self.still = still |
|
self.preprocess = preprocess |
|
self.verbose = False |
|
self.old_version = False |
|
self.net_recon = 'resnet50' |
|
self.init_path = None |
|
self.use_last_fc = False |
|
self.bfm_folder = './checkpoints/BFM_Fitting/' |
|
self.bfm_model = 'BFM_model_front.mat' |
|
self.focal = 1015. |
|
self.center = 112. |
|
self.camera_d = 10. |
|
self.z_near = 5. |
|
self.z_far = 15. |
|
self.device = 'cuda' |
|
self.image_hardcoded = image_hardcoded |
|
|
|
|
|
app = Flask(__name__) |
|
CORS(app) |
|
|
|
TEMP_DIR = None |
|
start_time = None |
|
VIDEO_DIRECTORY = None |
|
args = None |
|
unique_id = None |
|
|
|
app.config['temp_response'] = None |
|
app.config['generation_thread'] = None |
|
app.config['text_prompt'] = None |
|
app.config['final_video_path'] = None |
|
app.config['final_video_duration'] = None |
|
|
|
|
|
dir_path = os.path.dirname(os.path.realpath(__file__)) |
|
current_root_path = dir_path |
|
|
|
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat') |
|
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') |
|
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting') |
|
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') |
|
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') |
|
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') |
|
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') |
|
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') |
|
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar') |
|
|
|
|
|
def process_chunk(audio_chunk, preprocessed_data, args): |
|
print("Entered Process Chunk Function") |
|
global audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint |
|
global free_view_checkpoint |
|
if args.preprocess == 'full': |
|
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00109-model.pth.tar') |
|
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml') |
|
else: |
|
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar') |
|
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml') |
|
|
|
first_coeff_path = preprocessed_data["first_coeff_path"] |
|
crop_pic_path = preprocessed_data["crop_pic_path"] |
|
crop_info_path = "/home/user/app/preprocess_data/crop_info.json" |
|
with open(crop_info_path , "rb") as f: |
|
crop_info = json.load(f) |
|
|
|
print(f"Loaded existing preprocessed data") |
|
print("first_coeff_path",first_coeff_path) |
|
print("crop_pic_path",crop_pic_path) |
|
print("crop_info",crop_info) |
|
torch.cuda.empty_cache() |
|
batch = get_data(first_coeff_path, audio_chunk, args.device, ref_eyeblink_coeff_path=None, still=args.still) |
|
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, |
|
audio2exp_checkpoint, audio2exp_yaml_path, |
|
wav2lip_checkpoint, args.device) |
|
coeff_path = audio_to_coeff.generate(batch, args.result_dir, args.pose_style, ref_pose_coeff_path=None) |
|
|
|
|
|
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, |
|
facerender_yaml_path, args.device) |
|
|
|
torch.cuda.empty_cache() |
|
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_chunk, |
|
args.batch_size, args.input_yaw, args.input_pitch, args.input_roll, |
|
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess) |
|
torch.cuda.empty_cache() |
|
print("Will Enter Animation") |
|
result, base64_video, temp_file_path, _ = animate_from_coeff.generate(data, args.result_dir, args.source_image, crop_info, |
|
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess) |
|
|
|
|
|
|
|
|
|
app.config['temp_response'] = base64_video |
|
app.config['final_video_path'] = temp_file_path |
|
|
|
torch.cuda.empty_cache() |
|
return base64_video, temp_file_path |
|
|
|
|
|
def create_temp_dir(): |
|
return tempfile.TemporaryDirectory() |
|
|
|
def save_uploaded_file(file, filename,TEMP_DIR): |
|
unique_filename = str(uuid.uuid4()) + "_" + filename |
|
file_path = os.path.join(TEMP_DIR.name, unique_filename) |
|
file.save(file_path) |
|
return file_path |
|
|
|
client = OpenAI(api_key="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") |
|
|
|
def openai_chat_avatar(text_prompt): |
|
response = client.chat.completions.create( |
|
model="gpt-4o-mini", |
|
messages=[ |
|
{"role": "system", "content": "Summarize the following paragraph into a complete and accurate single sentence with no more than 15 words. The summary should capture the gist of the paragraph and make sense."}, |
|
{"role": "user", "content": f"Please summarize the following paragraph into one sentence with 15 words or fewer, ensuring it makes sense and captures the gist: {text_prompt}"}, |
|
], |
|
max_tokens = len(text_prompt), |
|
) |
|
return response |
|
|
|
def ryzedb_chat_avatar(question, app_id): |
|
url = "https://inference.dev.ryzeai.ai/chat/stream" |
|
|
|
|
|
payload = json.dumps({ |
|
"input": { |
|
"chat_history": [], |
|
"app_id": app_id, |
|
"question": question |
|
}, |
|
"config": {} |
|
}) |
|
headers = { |
|
'Content-Type': 'application/json' |
|
} |
|
|
|
try: |
|
|
|
response = requests.request("POST", url, headers=headers, data=payload) |
|
|
|
|
|
response.raise_for_status() |
|
|
|
|
|
return response.text |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"An error occurred: {e}") |
|
return None |
|
|
|
|
|
def custom_cleanup(temp_dir, exclude_dir): |
|
|
|
for filename in os.listdir(temp_dir): |
|
file_path = os.path.join(temp_dir, filename) |
|
|
|
if file_path != exclude_dir: |
|
try: |
|
if os.path.isdir(file_path): |
|
shutil.rmtree(file_path) |
|
else: |
|
os.remove(file_path) |
|
print(f"Deleted: {file_path}") |
|
except Exception as e: |
|
print(f"Failed to delete {file_path}. Reason: {e}") |
|
|
|
|
|
def generate_audio(voice_cloning, voice_gender, text_prompt): |
|
print("generate_audio") |
|
if voice_cloning == 'no': |
|
if voice_gender == 'male': |
|
voice = 'echo' |
|
print('Entering Audio creation using elevenlabs') |
|
set_api_key('92e149985ea2732b4359c74346c3daee') |
|
|
|
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_monolingual_v1",stream=True, latency=4) |
|
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
for chunk in audio: |
|
temp_file.write(chunk) |
|
driven_audio_path = temp_file.name |
|
print('driven_audio_path',driven_audio_path) |
|
print('Audio file saved using elevenlabs') |
|
|
|
else: |
|
voice = 'nova' |
|
|
|
print('Entering Audio creation using whisper') |
|
response = client.audio.speech.create(model="tts-1-hd", |
|
voice=voice, |
|
input = text_prompt) |
|
|
|
print('Audio created using whisper') |
|
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
driven_audio_path = temp_file.name |
|
|
|
response.write_to_file(driven_audio_path) |
|
print('Audio file saved using whisper') |
|
|
|
elif voice_cloning == 'yes': |
|
set_api_key('92e149985ea2732b4359c74346c3daee') |
|
|
|
|
|
voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings( |
|
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),) |
|
|
|
audio = generate(text = text_prompt, voice = voice, model = "eleven_monolingual_v1",stream=True, latency=4) |
|
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
for chunk in audio: |
|
temp_file.write(chunk) |
|
driven_audio_path = temp_file.name |
|
print('driven_audio_path',driven_audio_path) |
|
|
|
|
|
|
|
return driven_audio_path |
|
|
|
def run_preprocessing(args): |
|
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting |
|
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir') |
|
os.makedirs(first_frame_dir, exist_ok=True) |
|
fixed_temp_dir = "/home/user/app/preprocess_data/" |
|
os.makedirs(fixed_temp_dir, exist_ok=True) |
|
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl") |
|
|
|
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes": |
|
print("Loading preprocessed data...") |
|
with open(preprocessed_data_path, "rb") as f: |
|
preprocessed_data = pickle.load(f) |
|
print("Loaded existing preprocessed data from:", preprocessed_data_path) |
|
|
|
return preprocessed_data |
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_content(data): |
|
pattern = r'"content":"((?:\\.|[^"\\])*)"' |
|
match = re.search(pattern, data) |
|
if match: |
|
return match.group(1) |
|
else: |
|
return None |
|
|
|
@app.route("/run", methods=['POST']) |
|
def generate_video(): |
|
global start_time, VIDEO_DIRECTORY |
|
start_time = time.time() |
|
global TEMP_DIR |
|
TEMP_DIR = create_temp_dir() |
|
print('request:',request.method) |
|
try: |
|
if request.method == 'POST': |
|
|
|
image_path = '/home/user/app/images/shared image (3).png' |
|
source_image = Image.open(image_path) |
|
text_prompt = request.form['text_prompt'] |
|
|
|
print('Input text prompt: ',text_prompt) |
|
text_prompt = text_prompt.strip() |
|
if not text_prompt: |
|
return jsonify({'error': 'Input text prompt cannot be blank'}), 400 |
|
|
|
voice_cloning = request.form.get('voice_cloning', 'no') |
|
image_hardcoded = request.form.get('image_hardcoded', 'yes') |
|
chat_model_used = request.form.get('chat_model_used', 'ryzedb') |
|
target_language = request.form.get('target_language', 'original_text') |
|
print('target_language',target_language) |
|
pose_style = int(request.form.get('pose_style', 1)) |
|
expression_scale = float(request.form.get('expression_scale', 1)) |
|
enhancer = request.form.get('enhancer', None) |
|
voice_gender = request.form.get('voice_gender', 'male') |
|
still_str = request.form.get('still', 'False') |
|
still = still_str.lower() == 'false' |
|
print('still', still) |
|
preprocess = request.form.get('preprocess', 'crop') |
|
print('preprocess selected: ',preprocess) |
|
ref_pose_video = request.files.get('ref_pose', None) |
|
app_id = request.form['app_id'] |
|
if not app_id: |
|
return jsonify({'error': 'App ID cannot be blank'}), 400 |
|
|
|
|
|
if chat_model_used == 'ryzedb': |
|
start_time_ryze = time.time() |
|
response = ryzedb_chat_avatar(text_prompt, app_id) |
|
text_prompt = extract_content(response) |
|
text_prompt = text_prompt.replace('\n', ' ').replace('\\n', ' ').strip() |
|
if "No information available" in text_prompt: |
|
text_prompt = re.sub(r'\\+', '', text_prompt) |
|
|
|
response = openai_chat_avatar(text_prompt) |
|
text_prompt = response.choices[0].message.content.strip() |
|
app.config['text_prompt'] = text_prompt |
|
print('Final output text prompt using ryzedb: ',text_prompt) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif chat_model_used == 'self': |
|
text_prompt = text_prompt.strip() |
|
|
|
else: |
|
print("No Ryze database found") |
|
|
|
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR) |
|
print(source_image_path) |
|
|
|
|
|
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt) |
|
|
|
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name) |
|
result_folder = os.path.join(save_dir, "results") |
|
os.makedirs(result_folder, exist_ok=True) |
|
|
|
ref_pose_video_path = None |
|
if ref_pose_video: |
|
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
ref_pose_video_path = temp_file.name |
|
ref_pose_video.save(ref_pose_video_path) |
|
print('ref_pose_video_path',ref_pose_video_path) |
|
|
|
except Exception as e: |
|
app.logger.error(f"An error occurred: {e}") |
|
return "An error occurred", 500 |
|
|
|
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded) |
|
|
|
if torch.cuda.is_available() and not args.cpu: |
|
args.device = "cuda" |
|
else: |
|
args.device = "cpu" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
preprocessed_data = run_preprocessing(args) |
|
base64_video, temp_file_path = process_chunk(driven_audio_path, preprocessed_data, args) |
|
final_video_path = app.config['final_video_path'] |
|
print('final_video_path',final_video_path) |
|
|
|
if temp_file_path and temp_file_path.endswith('.mp4'): |
|
filename = os.path.basename(temp_file_path) |
|
os.makedirs('videos', exist_ok=True) |
|
VIDEO_DIRECTORY = os.path.abspath('videos') |
|
print("VIDEO_DIRECTORY: ",VIDEO_DIRECTORY) |
|
destination_path = os.path.join(VIDEO_DIRECTORY, filename) |
|
shutil.copy(temp_file_path, destination_path) |
|
video_url = f"/videos/{filename}" |
|
|
|
if final_video_path and os.path.exists(final_video_path): |
|
os.remove(final_video_path) |
|
print("Deleted video file:", final_video_path) |
|
|
|
preprocess_dir = os.path.join("/tmp", "preprocess_data") |
|
custom_cleanup(TEMP_DIR.name, preprocess_dir) |
|
|
|
print("Temporary files cleaned up, but preprocess_data is retained.") |
|
end_time = time.time() |
|
time_taken = end_time - start_time |
|
|
|
print(f"Time taken for endpoint: {time_taken:.2f} seconds") |
|
|
|
return jsonify({ |
|
"message": "Video processed and saved successfully.", |
|
"video_url": video_url, |
|
"text_prompt": text_prompt, |
|
"time_taken": time_taken, |
|
"status": "success" |
|
}) |
|
else: |
|
return jsonify({ |
|
"message": "Failed to process the video.", |
|
"status": "error" |
|
}), 500 |
|
|
|
except Exception as e: |
|
return jsonify({'status': 'error', 'message': str(e)}), 500 |
|
|
|
|
|
@app.route("/videos/<string:filename>", methods=['GET']) |
|
def serve_video(filename): |
|
global VIDEO_DIRECTORY |
|
return send_from_directory(VIDEO_DIRECTORY, filename, as_attachment=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.route("/health", methods=["GET"]) |
|
def health_status(): |
|
response = {"online": "true"} |
|
return jsonify(response) |
|
if __name__ == '__main__': |
|
app.run(debug=True) |