|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
class Conv2d(nn.Module):
|
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.conv_block = nn.Sequential(
|
|
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
|
nn.BatchNorm2d(cout)
|
|
)
|
|
self.act = nn.ReLU()
|
|
self.residual = residual
|
|
|
|
def forward(self, x):
|
|
out = self.conv_block(x)
|
|
if self.residual:
|
|
out += x
|
|
return self.act(out)
|
|
|
|
class AudioEncoder(nn.Module):
|
|
def __init__(self, wav2lip_checkpoint, device):
|
|
super(AudioEncoder, self).__init__()
|
|
|
|
self.audio_encoder = nn.Sequential(
|
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
|
|
|
|
|
wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict']
|
|
state_dict = self.audio_encoder.state_dict()
|
|
|
|
for k,v in wav2lip_state_dict.items():
|
|
if 'audio_encoder' in k:
|
|
state_dict[k.replace('module.audio_encoder.', '')] = v
|
|
self.audio_encoder.load_state_dict(state_dict)
|
|
|
|
|
|
def forward(self, audio_sequences):
|
|
|
|
B = audio_sequences.size(0)
|
|
|
|
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
|
|
|
audio_embedding = self.audio_encoder(audio_sequences)
|
|
dim = audio_embedding.shape[1]
|
|
audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))
|
|
|
|
return audio_embedding.squeeze(-1).squeeze(-1)
|
|
|