|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
from src.facerender.modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d, ResBlock3d, SPADEResnetBlock
|
|
from src.facerender.modules.dense_motion import DenseMotionNetwork
|
|
|
|
|
|
class OcclusionAwareGenerator(nn.Module):
|
|
"""
|
|
Generator follows NVIDIA architecture.
|
|
"""
|
|
|
|
def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth,
|
|
num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False):
|
|
super(OcclusionAwareGenerator, self).__init__()
|
|
|
|
if dense_motion_params is not None:
|
|
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel,
|
|
estimate_occlusion_map=estimate_occlusion_map,
|
|
**dense_motion_params)
|
|
else:
|
|
self.dense_motion_network = None
|
|
|
|
self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(7, 7), padding=(3, 3))
|
|
|
|
down_blocks = []
|
|
for i in range(num_down_blocks):
|
|
in_features = min(max_features, block_expansion * (2 ** i))
|
|
out_features = min(max_features, block_expansion * (2 ** (i + 1)))
|
|
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
|
|
self.down_blocks = nn.ModuleList(down_blocks)
|
|
|
|
self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)
|
|
|
|
self.reshape_channel = reshape_channel
|
|
self.reshape_depth = reshape_depth
|
|
|
|
self.resblocks_3d = torch.nn.Sequential()
|
|
for i in range(num_resblocks):
|
|
self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))
|
|
|
|
out_features = block_expansion * (2 ** (num_down_blocks))
|
|
self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True)
|
|
self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1)
|
|
|
|
self.resblocks_2d = torch.nn.Sequential()
|
|
for i in range(num_resblocks):
|
|
self.resblocks_2d.add_module('2dr' + str(i), ResBlock2d(out_features, kernel_size=3, padding=1))
|
|
|
|
up_blocks = []
|
|
for i in range(num_down_blocks):
|
|
in_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i)))
|
|
out_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i - 1)))
|
|
up_blocks.append(UpBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
|
|
self.up_blocks = nn.ModuleList(up_blocks)
|
|
|
|
self.final = nn.Conv2d(block_expansion, image_channel, kernel_size=(7, 7), padding=(3, 3))
|
|
self.estimate_occlusion_map = estimate_occlusion_map
|
|
self.image_channel = image_channel
|
|
|
|
def deform_input(self, inp, deformation):
|
|
_, d_old, h_old, w_old, _ = deformation.shape
|
|
_, _, d, h, w = inp.shape
|
|
if d_old != d or h_old != h or w_old != w:
|
|
deformation = deformation.permute(0, 4, 1, 2, 3)
|
|
deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear')
|
|
deformation = deformation.permute(0, 2, 3, 4, 1)
|
|
return F.grid_sample(inp, deformation)
|
|
|
|
def forward(self, source_image, kp_driving, kp_source):
|
|
|
|
out = self.first(source_image)
|
|
for i in range(len(self.down_blocks)):
|
|
out = self.down_blocks[i](out)
|
|
out = self.second(out)
|
|
bs, c, h, w = out.shape
|
|
|
|
feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w)
|
|
feature_3d = self.resblocks_3d(feature_3d)
|
|
|
|
|
|
output_dict = {}
|
|
if self.dense_motion_network is not None:
|
|
dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving,
|
|
kp_source=kp_source)
|
|
output_dict['mask'] = dense_motion['mask']
|
|
|
|
if 'occlusion_map' in dense_motion:
|
|
occlusion_map = dense_motion['occlusion_map']
|
|
output_dict['occlusion_map'] = occlusion_map
|
|
else:
|
|
occlusion_map = None
|
|
deformation = dense_motion['deformation']
|
|
out = self.deform_input(feature_3d, deformation)
|
|
|
|
bs, c, d, h, w = out.shape
|
|
out = out.view(bs, c*d, h, w)
|
|
out = self.third(out)
|
|
out = self.fourth(out)
|
|
|
|
if occlusion_map is not None:
|
|
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]:
|
|
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear')
|
|
out = out * occlusion_map
|
|
|
|
|
|
|
|
|
|
out = self.resblocks_2d(out)
|
|
for i in range(len(self.up_blocks)):
|
|
out = self.up_blocks[i](out)
|
|
out = self.final(out)
|
|
out = F.sigmoid(out)
|
|
|
|
output_dict["prediction"] = out
|
|
|
|
return output_dict
|
|
|
|
|
|
class SPADEDecoder(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
ic = 256
|
|
oc = 64
|
|
norm_G = 'spadespectralinstance'
|
|
label_nc = 256
|
|
|
|
self.fc = nn.Conv2d(ic, 2 * ic, 3, padding=1)
|
|
self.G_middle_0 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
|
|
self.G_middle_1 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
|
|
self.G_middle_2 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
|
|
self.G_middle_3 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
|
|
self.G_middle_4 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
|
|
self.G_middle_5 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
|
|
self.up_0 = SPADEResnetBlock(2 * ic, ic, norm_G, label_nc)
|
|
self.up_1 = SPADEResnetBlock(ic, oc, norm_G, label_nc)
|
|
self.conv_img = nn.Conv2d(oc, 3, 3, padding=1)
|
|
self.up = nn.Upsample(scale_factor=2)
|
|
|
|
def forward(self, feature):
|
|
seg = feature
|
|
x = self.fc(feature)
|
|
x = self.G_middle_0(x, seg)
|
|
x = self.G_middle_1(x, seg)
|
|
x = self.G_middle_2(x, seg)
|
|
x = self.G_middle_3(x, seg)
|
|
x = self.G_middle_4(x, seg)
|
|
x = self.G_middle_5(x, seg)
|
|
x = self.up(x)
|
|
x = self.up_0(x, seg)
|
|
x = self.up(x)
|
|
x = self.up_1(x, seg)
|
|
|
|
x = self.conv_img(F.leaky_relu(x, 2e-1))
|
|
|
|
x = F.sigmoid(x)
|
|
|
|
return x
|
|
|
|
|
|
class OcclusionAwareSPADEGenerator(nn.Module):
|
|
|
|
def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth,
|
|
num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False):
|
|
super(OcclusionAwareSPADEGenerator, self).__init__()
|
|
|
|
if dense_motion_params is not None:
|
|
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel,
|
|
estimate_occlusion_map=estimate_occlusion_map,
|
|
**dense_motion_params)
|
|
else:
|
|
self.dense_motion_network = None
|
|
|
|
self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1))
|
|
|
|
down_blocks = []
|
|
for i in range(num_down_blocks):
|
|
in_features = min(max_features, block_expansion * (2 ** i))
|
|
out_features = min(max_features, block_expansion * (2 ** (i + 1)))
|
|
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
|
|
self.down_blocks = nn.ModuleList(down_blocks)
|
|
|
|
self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)
|
|
|
|
self.reshape_channel = reshape_channel
|
|
self.reshape_depth = reshape_depth
|
|
|
|
self.resblocks_3d = torch.nn.Sequential()
|
|
for i in range(num_resblocks):
|
|
self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))
|
|
|
|
out_features = block_expansion * (2 ** (num_down_blocks))
|
|
self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True)
|
|
self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1)
|
|
|
|
self.estimate_occlusion_map = estimate_occlusion_map
|
|
self.image_channel = image_channel
|
|
|
|
self.decoder = SPADEDecoder()
|
|
|
|
def deform_input(self, inp, deformation):
|
|
_, d_old, h_old, w_old, _ = deformation.shape
|
|
_, _, d, h, w = inp.shape
|
|
if d_old != d or h_old != h or w_old != w:
|
|
deformation = deformation.permute(0, 4, 1, 2, 3)
|
|
deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear')
|
|
deformation = deformation.permute(0, 2, 3, 4, 1)
|
|
return F.grid_sample(inp, deformation)
|
|
|
|
def forward(self, source_image, kp_driving, kp_source):
|
|
|
|
out = self.first(source_image)
|
|
for i in range(len(self.down_blocks)):
|
|
out = self.down_blocks[i](out)
|
|
out = self.second(out)
|
|
bs, c, h, w = out.shape
|
|
|
|
feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w)
|
|
feature_3d = self.resblocks_3d(feature_3d)
|
|
|
|
|
|
output_dict = {}
|
|
if self.dense_motion_network is not None:
|
|
dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving,
|
|
kp_source=kp_source)
|
|
output_dict['mask'] = dense_motion['mask']
|
|
|
|
|
|
|
|
if 'occlusion_map' in dense_motion:
|
|
occlusion_map = dense_motion['occlusion_map']
|
|
output_dict['occlusion_map'] = occlusion_map
|
|
else:
|
|
occlusion_map = None
|
|
deformation = dense_motion['deformation']
|
|
out = self.deform_input(feature_3d, deformation)
|
|
|
|
bs, c, d, h, w = out.shape
|
|
out = out.view(bs, c*d, h, w)
|
|
out = self.third(out)
|
|
out = self.fourth(out)
|
|
|
|
|
|
|
|
if occlusion_map is not None:
|
|
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]:
|
|
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear')
|
|
out = out * occlusion_map
|
|
|
|
|
|
out = self.decoder(out)
|
|
|
|
output_dict["prediction"] = out
|
|
|
|
return output_dict |