|
from flask import Flask, request, jsonify |
|
import torch |
|
import shutil |
|
import os |
|
import sys |
|
from argparse import ArgumentParser |
|
from time import strftime |
|
from argparse import Namespace |
|
from src.utils.preprocess import CropAndExtract |
|
from src.test_audio2coeff import Audio2Coeff |
|
from src.facerender.animate import AnimateFromCoeff |
|
from src.generate_batch import get_data |
|
from src.generate_facerender_batch import get_facerender_data |
|
|
|
import tempfile |
|
from openai import OpenAI, AsyncOpenAI |
|
import threading |
|
import elevenlabs |
|
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings |
|
|
|
|
|
import uuid |
|
import time |
|
from PIL import Image |
|
import moviepy.editor as mp |
|
import requests |
|
import json |
|
import pickle |
|
from dotenv import load_dotenv |
|
from celery import Celery |
|
|
|
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
class AnimationConfig: |
|
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded): |
|
self.driven_audio = driven_audio_path |
|
self.source_image = source_image_path |
|
self.ref_eyeblink = None |
|
self.ref_pose = ref_pose_video_path |
|
self.checkpoint_dir = './checkpoints' |
|
self.result_dir = result_folder |
|
self.pose_style = pose_style |
|
self.batch_size = 2 |
|
self.expression_scale = expression_scale |
|
self.input_yaw = None |
|
self.input_pitch = None |
|
self.input_roll = None |
|
self.enhancer = enhancer |
|
self.background_enhancer = None |
|
self.cpu = False |
|
self.face3dvis = False |
|
self.still = still |
|
self.preprocess = preprocess |
|
self.verbose = False |
|
self.old_version = False |
|
self.net_recon = 'resnet50' |
|
self.init_path = None |
|
self.use_last_fc = False |
|
self.bfm_folder = './checkpoints/BFM_Fitting/' |
|
self.bfm_model = 'BFM_model_front.mat' |
|
self.focal = 1015. |
|
self.center = 112. |
|
self.camera_d = 10. |
|
self.z_near = 5. |
|
self.z_far = 15. |
|
self.device = 'cpu' |
|
self.image_hardcoded = image_hardcoded |
|
|
|
|
|
app = Flask(__name__) |
|
|
|
app.config['broker_url'] = 'redis://localhost:6379/0' |
|
app.config['result_backend'] = 'redis://localhost:6379/0' |
|
|
|
celery = Celery(app.name, broker=app.config['broker_url']) |
|
celery.conf.update(app.config) |
|
|
|
TEMP_DIR = None |
|
start_time = None |
|
|
|
app.config['temp_response'] = None |
|
app.config['generation_thread'] = None |
|
app.config['text_prompt'] = None |
|
app.config['final_video_path'] = None |
|
app.config['final_video_duration'] = None |
|
|
|
|
|
|
|
|
|
def main(args): |
|
print("Entered main function") |
|
pic_path = args.source_image |
|
audio_path = args.driven_audio |
|
save_dir = args.result_dir |
|
pose_style = args.pose_style |
|
device = args.device |
|
batch_size = args.batch_size |
|
input_yaw_list = args.input_yaw |
|
input_pitch_list = args.input_pitch |
|
input_roll_list = args.input_roll |
|
ref_eyeblink = args.ref_eyeblink |
|
ref_pose = args.ref_pose |
|
preprocess = args.preprocess |
|
image_hardcoded = args.image_hardcoded |
|
|
|
dir_path = os.path.dirname(os.path.realpath(__file__)) |
|
current_root_path = dir_path |
|
print('current_root_path ',current_root_path) |
|
|
|
|
|
|
|
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat') |
|
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth') |
|
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting') |
|
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth') |
|
|
|
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth') |
|
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') |
|
|
|
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth') |
|
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') |
|
|
|
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar') |
|
|
|
if preprocess == 'full': |
|
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar') |
|
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml') |
|
else: |
|
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar') |
|
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml') |
|
|
|
|
|
|
|
|
|
print(path_of_net_recon_model) |
|
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device) |
|
|
|
|
|
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, |
|
audio2exp_checkpoint, audio2exp_yaml_path, |
|
wav2lip_checkpoint, device) |
|
|
|
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, |
|
facerender_yaml_path, device) |
|
|
|
first_frame_dir = os.path.join(save_dir, 'first_frame_dir') |
|
os.makedirs(first_frame_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
|
fixed_temp_dir = "/tmp/preprocess_data" |
|
os.makedirs(fixed_temp_dir, exist_ok=True) |
|
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl") |
|
|
|
if os.path.exists(preprocessed_data_path) and image_hardcoded == "yes": |
|
print("Loading preprocessed data...") |
|
with open(preprocessed_data_path, "rb") as f: |
|
preprocessed_data = pickle.load(f) |
|
first_coeff_new_path = preprocessed_data["first_coeff_path"] |
|
crop_pic_new_path = preprocessed_data["crop_pic_path"] |
|
crop_info_path = preprocessed_data["crop_info_path"] |
|
with open(crop_info_path, "rb") as f: |
|
crop_info = pickle.load(f) |
|
|
|
print(f"Loaded existing preprocessed data from: {preprocessed_data_path}") |
|
|
|
else: |
|
print("Running preprocessing...") |
|
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True) |
|
first_coeff_new_path = os.path.join(fixed_temp_dir, os.path.basename(first_coeff_path)) |
|
crop_pic_new_path = os.path.join(fixed_temp_dir, os.path.basename(crop_pic_path)) |
|
crop_info_new_path = os.path.join(fixed_temp_dir, "crop_info.pkl") |
|
shutil.move(first_coeff_path, first_coeff_new_path) |
|
shutil.move(crop_pic_path, crop_pic_new_path) |
|
|
|
with open(crop_info_new_path, "wb") as f: |
|
pickle.dump(crop_info, f) |
|
|
|
preprocessed_data = {"first_coeff_path": first_coeff_new_path, |
|
"crop_pic_path": crop_pic_new_path, |
|
"crop_info_path": crop_info_new_path} |
|
|
|
|
|
with open(preprocessed_data_path, "wb") as f: |
|
pickle.dump(preprocessed_data, f) |
|
print(f"Preprocessed data saved to: {preprocessed_data_path}") |
|
|
|
print('first_coeff_path ',first_coeff_new_path) |
|
print('crop_pic_path ',crop_pic_new_path) |
|
print('crop_info ',crop_info) |
|
|
|
if first_coeff_new_path is None: |
|
print("Can't get the coeffs of the input") |
|
return |
|
|
|
if ref_eyeblink is not None: |
|
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0] |
|
ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname) |
|
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True) |
|
|
|
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir) |
|
else: |
|
ref_eyeblink_coeff_path=None |
|
print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path) |
|
|
|
if ref_pose is not None: |
|
if ref_pose == ref_eyeblink: |
|
ref_pose_coeff_path = ref_eyeblink_coeff_path |
|
else: |
|
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0] |
|
ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname) |
|
os.makedirs(ref_pose_frame_dir, exist_ok=True) |
|
|
|
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir) |
|
else: |
|
ref_pose_coeff_path=None |
|
print('ref_eyeblink_coeff_path',ref_pose_coeff_path) |
|
|
|
batch = get_data(first_coeff_new_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still) |
|
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path) |
|
|
|
|
|
if args.face3dvis: |
|
from src.face3d.visualize import gen_composed_video |
|
gen_composed_video(args, device, first_coeff_new_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4')) |
|
|
|
|
|
|
|
|
|
|
|
|
|
data = get_facerender_data(coeff_path, crop_pic_new_path, first_coeff_new_path, audio_path, |
|
batch_size, input_yaw_list, input_pitch_list, input_roll_list, |
|
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess) |
|
|
|
|
|
|
|
|
|
|
|
result, base64_video,temp_file_path,new_audio_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \ |
|
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess) |
|
|
|
|
|
video_clip = mp.VideoFileClip(temp_file_path) |
|
duration = video_clip.duration |
|
|
|
app.config['temp_response'] = base64_video |
|
app.config['final_video_path'] = temp_file_path |
|
app.config['final_video_duration'] = duration |
|
|
|
return base64_video, temp_file_path, duration |
|
|
|
|
|
def create_temp_dir(): |
|
return tempfile.TemporaryDirectory() |
|
|
|
def save_uploaded_file(file, filename,TEMP_DIR): |
|
print("Entered save_uploaded_file") |
|
unique_filename = str(uuid.uuid4()) + "_" + filename |
|
file_path = os.path.join(TEMP_DIR.name, unique_filename) |
|
file.save(file_path) |
|
return file_path |
|
|
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY')) |
|
|
|
def openai_chat_avatar(text_prompt): |
|
response = client.chat.completions.create( |
|
model="gpt-4o-mini", |
|
messages=[{"role": "system", "content": "Answer using the minimum words you can ever use."}, |
|
{"role": "user", "content": f"Hi! I need help with something. Can you assist me with the following: {text_prompt}"}, |
|
], |
|
max_tokens = len(text_prompt) + 300 |
|
|
|
|
|
) |
|
return response |
|
|
|
def ryzedb_chat_avatar(question): |
|
url = "https://inference.dev.ryzeai.ai/chat/stream" |
|
question = question + ". Summarize and Answer using the minimum words you can ever use." |
|
payload = json.dumps({ |
|
"input": { |
|
"chat_history": [], |
|
"app_id": os.getenv('RYZE_APP_ID'), |
|
"question": question |
|
}, |
|
"config": {} |
|
}) |
|
headers = { |
|
'Content-Type': 'application/json' |
|
} |
|
|
|
try: |
|
|
|
response = requests.request("POST", url, headers=headers, data=payload) |
|
|
|
|
|
response.raise_for_status() |
|
|
|
|
|
return response.text |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"An error occurred: {e}") |
|
return None |
|
|
|
def custom_cleanup(temp_dir, exclude_dir): |
|
|
|
for filename in os.listdir(temp_dir): |
|
file_path = os.path.join(temp_dir, filename) |
|
|
|
if file_path != exclude_dir: |
|
try: |
|
if os.path.isdir(file_path): |
|
shutil.rmtree(file_path) |
|
else: |
|
os.remove(file_path) |
|
print(f"Deleted: {file_path}") |
|
except Exception as e: |
|
print(f"Failed to delete {file_path}. Reason: {e}") |
|
|
|
|
|
def generate_audio(voice_cloning, voice_gender, text_prompt): |
|
print("generate_audio") |
|
if voice_cloning == 'no': |
|
if voice_gender == 'male': |
|
voice = 'echo' |
|
print('Entering Audio creation using elevenlabs') |
|
set_api_key("92e149985ea2732b4359c74346c3daee") |
|
|
|
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4) |
|
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
for chunk in audio: |
|
temp_file.write(chunk) |
|
driven_audio_path = temp_file.name |
|
print('driven_audio_path',driven_audio_path) |
|
print('Audio file saved using elevenlabs') |
|
|
|
else: |
|
voice = 'nova' |
|
|
|
print('Entering Audio creation using whisper') |
|
response = client.audio.speech.create(model="tts-1-hd", |
|
voice=voice, |
|
input = text_prompt) |
|
|
|
print('Audio created using whisper') |
|
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
driven_audio_path = temp_file.name |
|
|
|
response.write_to_file(driven_audio_path) |
|
print('Audio file saved using whisper') |
|
|
|
elif voice_cloning == 'yes': |
|
set_api_key("92e149985ea2732b4359c74346c3daee") |
|
|
|
|
|
voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings( |
|
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),) |
|
|
|
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4) |
|
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
for chunk in audio: |
|
temp_file.write(chunk) |
|
driven_audio_path = temp_file.name |
|
print('driven_audio_path',driven_audio_path) |
|
|
|
return driven_audio_path |
|
|
|
def split_audio(audio_path, chunk_duration=5): |
|
audio_clip = mp.AudioFileClip(audio_path) |
|
total_duration = audio_clip.duration |
|
|
|
audio_chunks = [] |
|
for start_time in range(0, int(total_duration), chunk_duration): |
|
end_time = min(start_time + chunk_duration, total_duration) |
|
chunk = audio_clip.subclip(start_time, end_time) |
|
with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file: |
|
chunk_path = temp_file.name |
|
chunk.write_audiofile(chunk_path) |
|
audio_chunks.append(chunk_path) |
|
|
|
return audio_chunks |
|
|
|
@celery.task |
|
def process_video_for_chunk(audio_chunk_path, args_dict, chunk_index): |
|
print("Entered process_video_for_chunk") |
|
args = AnimationConfig( |
|
driven_audio_path=args_dict['driven_audio_path'], |
|
source_image_path=args_dict['source_image_path'], |
|
result_folder=args_dict['result_folder'], |
|
pose_style=args_dict['pose_style'], |
|
expression_scale=args_dict['expression_scale'], |
|
enhancer=args_dict['enhancer'], |
|
still=args_dict['still'], |
|
preprocess=args_dict['preprocess'], |
|
ref_pose_video_path=args_dict['ref_pose_video_path'], |
|
image_hardcoded=args_dict['image_hardcoded'] |
|
) |
|
args.driven_audio = audio_chunk_path |
|
chunk_save_dir = os.path.join(args.result_dir, f"chunk_{chunk_index}") |
|
os.makedirs(chunk_save_dir, exist_ok=True) |
|
print("args",args) |
|
try: |
|
base64_video, video_chunk_path, duration = main(args) |
|
print(f"Main function returned: {video_chunk_path}, {duration}") |
|
return video_chunk_path |
|
except Exception as e: |
|
print(f"Error in process_video_for_chunk: {str(e)}") |
|
raise |
|
|
|
|
|
|
|
|
|
@app.route("/run", methods=['POST']) |
|
def generate_video(): |
|
global start_time |
|
start_time = time.time() |
|
global TEMP_DIR |
|
TEMP_DIR = create_temp_dir() |
|
print('request:',request.method) |
|
try: |
|
if request.method == 'POST': |
|
|
|
image_path = 'C:/Users/fd01076/Downloads/marc.png' |
|
source_image = Image.open(image_path) |
|
text_prompt = request.form['text_prompt'] |
|
|
|
print('Input text prompt: ',text_prompt) |
|
text_prompt = text_prompt.strip() |
|
if not text_prompt: |
|
return jsonify({'error': 'Input text prompt cannot be blank'}), 400 |
|
|
|
voice_cloning = request.form.get('voice_cloning', 'yes') |
|
image_hardcoded = request.form.get('image_hardcoded', 'yes') |
|
chat_model_used = request.form.get('chat_model_used', 'openai') |
|
target_language = request.form.get('target_language', 'original_text') |
|
print('target_language',target_language) |
|
pose_style = int(request.form.get('pose_style', 1)) |
|
expression_scale = float(request.form.get('expression_scale', 1)) |
|
enhancer = request.form.get('enhancer', None) |
|
voice_gender = request.form.get('voice_gender', 'male') |
|
still_str = request.form.get('still', 'False') |
|
still = still_str.lower() == 'false' |
|
print('still', still) |
|
preprocess = request.form.get('preprocess', 'crop') |
|
print('preprocess selected: ',preprocess) |
|
ref_pose_video = request.files.get('ref_pose', None) |
|
|
|
if chat_model_used == 'ryzedb': |
|
response = ryzedb_chat_avatar(text_prompt) |
|
events = response.split('\r\n\r\n') |
|
content = None |
|
for event in events: |
|
|
|
lines = event.split('\r\n') |
|
if len(lines) > 1 and lines[0] == 'event: data': |
|
|
|
json_data = lines[1].replace('data: ', '') |
|
try: |
|
data = json.loads(json_data) |
|
text_prompt = data.get('content') |
|
app.config['text_prompt'] = text_prompt |
|
print('Final output text prompt using ryzedb: ',text_prompt) |
|
break |
|
except json.JSONDecodeError: |
|
continue |
|
|
|
else: |
|
|
|
|
|
app.config['text_prompt'] = text_prompt |
|
print('Final output text prompt using openai: ',text_prompt) |
|
|
|
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR) |
|
print(source_image_path) |
|
|
|
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt) |
|
chunk_duration = 5 |
|
print(f"Splitting the audio into {chunk_duration}-second chunks...") |
|
audio_chunks = split_audio(driven_audio_path, chunk_duration=chunk_duration) |
|
print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}") |
|
|
|
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name) |
|
result_folder = os.path.join(save_dir, "results") |
|
os.makedirs(result_folder, exist_ok=True) |
|
|
|
ref_pose_video_path = None |
|
if ref_pose_video: |
|
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file: |
|
ref_pose_video_path = temp_file.name |
|
ref_pose_video.save(ref_pose_video_path) |
|
print('ref_pose_video_path',ref_pose_video_path) |
|
|
|
except Exception as e: |
|
app.logger.error(f"An error occurred: {e}") |
|
return "An error occurred", 500 |
|
|
|
|
|
args_dict = { |
|
'driven_audio_path': driven_audio_path, |
|
'source_image_path': source_image_path, |
|
'result_folder': result_folder, |
|
'pose_style': pose_style, |
|
'expression_scale': expression_scale, |
|
'enhancer': enhancer, |
|
'still': still, |
|
'preprocess': preprocess, |
|
'ref_pose_video_path': ref_pose_video_path, |
|
'image_hardcoded': image_hardcoded, |
|
'device': 'cuda' if torch.cuda.is_available() else 'cpu'} |
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
|
|
chunk_tasks = [] |
|
for index, audio_chunk in enumerate(audio_chunks): |
|
print(f"Submitting chunk {index} with audio_chunk: {audio_chunk}") |
|
task = process_video_for_chunk.apply_async(args=[audio_chunk, args_dict, index]) |
|
print(f"Task {task.id} submitted for chunk {index}") |
|
chunk_tasks.append(task) |
|
print("chunk_tasks",chunk_tasks) |
|
|
|
|
|
|
|
video_chunk_paths = [] |
|
for task in chunk_tasks: |
|
try: |
|
video_chunk_path = task.get() |
|
video_chunk_paths.append(video_chunk_path) |
|
except Exception as e: |
|
print(f"Error while fetching task result: {str(e)}") |
|
return jsonify({'status': 'error', 'message': str(e)}), 500 |
|
|
|
print(f"Video chunks generated: {video_chunk_paths}") |
|
preprocess_dir = os.path.join("/tmp", "preprocess_data") |
|
custom_cleanup(TEMP_DIR.name, preprocess_dir) |
|
|
|
print("Temporary files cleaned up, but preprocess_data is retained.") |
|
return jsonify({ |
|
'status': 'completed', |
|
'video_chunk_paths': video_chunk_paths |
|
}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as e: |
|
return jsonify({'status': 'error', 'message': str(e)}), 500 |
|
|
|
|
|
|
|
@app.route("/health", methods=["GET"]) |
|
def health_status(): |
|
response = {"online": "true"} |
|
return jsonify(response) |
|
if __name__ == '__main__': |
|
app.run(debug=True) |
|
|