|
"""This package includes all the modules related to data loading and preprocessing
|
|
|
|
To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset.
|
|
You need to implement four functions:
|
|
-- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
|
|
-- <__len__>: return the size of dataset.
|
|
-- <__getitem__>: get a data point from data loader.
|
|
-- <modify_commandline_options>: (optionally) add dataset-specific options and set default options.
|
|
|
|
Now you can use the dataset class by specifying flag '--dataset_mode dummy'.
|
|
See our template dataset class 'template_dataset.py' for more details.
|
|
"""
|
|
import numpy as np
|
|
import importlib
|
|
import torch.utils.data
|
|
from face3d.data.base_dataset import BaseDataset
|
|
|
|
|
|
def find_dataset_using_name(dataset_name):
|
|
"""Import the module "data/[dataset_name]_dataset.py".
|
|
|
|
In the file, the class called DatasetNameDataset() will
|
|
be instantiated. It has to be a subclass of BaseDataset,
|
|
and it is case-insensitive.
|
|
"""
|
|
dataset_filename = "data." + dataset_name + "_dataset"
|
|
datasetlib = importlib.import_module(dataset_filename)
|
|
|
|
dataset = None
|
|
target_dataset_name = dataset_name.replace('_', '') + 'dataset'
|
|
for name, cls in datasetlib.__dict__.items():
|
|
if name.lower() == target_dataset_name.lower() \
|
|
and issubclass(cls, BaseDataset):
|
|
dataset = cls
|
|
|
|
if dataset is None:
|
|
raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name))
|
|
|
|
return dataset
|
|
|
|
|
|
def get_option_setter(dataset_name):
|
|
"""Return the static method <modify_commandline_options> of the dataset class."""
|
|
dataset_class = find_dataset_using_name(dataset_name)
|
|
return dataset_class.modify_commandline_options
|
|
|
|
|
|
def create_dataset(opt, rank=0):
|
|
"""Create a dataset given the option.
|
|
|
|
This function wraps the class CustomDatasetDataLoader.
|
|
This is the main interface between this package and 'train.py'/'test.py'
|
|
|
|
Example:
|
|
>>> from data import create_dataset
|
|
>>> dataset = create_dataset(opt)
|
|
"""
|
|
data_loader = CustomDatasetDataLoader(opt, rank=rank)
|
|
dataset = data_loader.load_data()
|
|
return dataset
|
|
|
|
class CustomDatasetDataLoader():
|
|
"""Wrapper class of Dataset class that performs multi-threaded data loading"""
|
|
|
|
def __init__(self, opt, rank=0):
|
|
"""Initialize this class
|
|
|
|
Step 1: create a dataset instance given the name [dataset_mode]
|
|
Step 2: create a multi-threaded data loader.
|
|
"""
|
|
self.opt = opt
|
|
dataset_class = find_dataset_using_name(opt.dataset_mode)
|
|
self.dataset = dataset_class(opt)
|
|
self.sampler = None
|
|
print("rank %d %s dataset [%s] was created" % (rank, self.dataset.name, type(self.dataset).__name__))
|
|
if opt.use_ddp and opt.isTrain:
|
|
world_size = opt.world_size
|
|
self.sampler = torch.utils.data.distributed.DistributedSampler(
|
|
self.dataset,
|
|
num_replicas=world_size,
|
|
rank=rank,
|
|
shuffle=not opt.serial_batches
|
|
)
|
|
self.dataloader = torch.utils.data.DataLoader(
|
|
self.dataset,
|
|
sampler=self.sampler,
|
|
num_workers=int(opt.num_threads / world_size),
|
|
batch_size=int(opt.batch_size / world_size),
|
|
drop_last=True)
|
|
else:
|
|
self.dataloader = torch.utils.data.DataLoader(
|
|
self.dataset,
|
|
batch_size=opt.batch_size,
|
|
shuffle=(not opt.serial_batches) and opt.isTrain,
|
|
num_workers=int(opt.num_threads),
|
|
drop_last=True
|
|
)
|
|
|
|
def set_epoch(self, epoch):
|
|
self.dataset.current_epoch = epoch
|
|
if self.sampler is not None:
|
|
self.sampler.set_epoch(epoch)
|
|
|
|
def load_data(self):
|
|
return self
|
|
|
|
def __len__(self):
|
|
"""Return the number of data in the dataset"""
|
|
return min(len(self.dataset), self.opt.max_dataset_size)
|
|
|
|
def __iter__(self):
|
|
"""Return a batch of data"""
|
|
for i, data in enumerate(self.dataloader):
|
|
if i * self.opt.batch_size >= self.opt.max_dataset_size:
|
|
break
|
|
yield data
|
|
|