|
|
|
import functools
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from utils import flow_util
|
|
from models.base_blocks import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder
|
|
|
|
|
|
class DNet(nn.Module):
|
|
def __init__(self):
|
|
super(DNet, self).__init__()
|
|
self.mapping_net = MappingNet()
|
|
self.warpping_net = WarpingNet()
|
|
self.editing_net = EditingNet()
|
|
|
|
def forward(self, input_image, driving_source, stage=None):
|
|
if stage == 'warp':
|
|
descriptor = self.mapping_net(driving_source)
|
|
output = self.warpping_net(input_image, descriptor)
|
|
else:
|
|
descriptor = self.mapping_net(driving_source)
|
|
output = self.warpping_net(input_image, descriptor)
|
|
output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor)
|
|
return output
|
|
|
|
class MappingNet(nn.Module):
|
|
def __init__(self, coeff_nc=73, descriptor_nc=256, layer=3):
|
|
super( MappingNet, self).__init__()
|
|
|
|
self.layer = layer
|
|
nonlinearity = nn.LeakyReLU(0.1)
|
|
|
|
self.first = nn.Sequential(
|
|
torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True))
|
|
|
|
for i in range(layer):
|
|
net = nn.Sequential(nonlinearity,
|
|
torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3))
|
|
setattr(self, 'encoder' + str(i), net)
|
|
|
|
self.pooling = nn.AdaptiveAvgPool1d(1)
|
|
self.output_nc = descriptor_nc
|
|
|
|
def forward(self, input_3dmm):
|
|
out = self.first(input_3dmm)
|
|
for i in range(self.layer):
|
|
model = getattr(self, 'encoder' + str(i))
|
|
out = model(out) + out[:,:,3:-3]
|
|
out = self.pooling(out)
|
|
return out
|
|
|
|
class WarpingNet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
image_nc=3,
|
|
descriptor_nc=256,
|
|
base_nc=32,
|
|
max_nc=256,
|
|
encoder_layer=5,
|
|
decoder_layer=3,
|
|
use_spect=False
|
|
):
|
|
super( WarpingNet, self).__init__()
|
|
|
|
nonlinearity = nn.LeakyReLU(0.1)
|
|
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
|
kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
|
|
|
self.descriptor_nc = descriptor_nc
|
|
self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc,
|
|
max_nc, encoder_layer, decoder_layer, **kwargs)
|
|
|
|
self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc),
|
|
nonlinearity,
|
|
nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3))
|
|
|
|
self.pool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
def forward(self, input_image, descriptor):
|
|
final_output={}
|
|
output = self.hourglass(input_image, descriptor)
|
|
final_output['flow_field'] = self.flow_out(output)
|
|
|
|
deformation = flow_util.convert_flow_to_deformation(final_output['flow_field'])
|
|
final_output['warp_image'] = flow_util.warp_image(input_image, deformation)
|
|
return final_output
|
|
|
|
|
|
class EditingNet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
image_nc=3,
|
|
descriptor_nc=256,
|
|
layer=3,
|
|
base_nc=64,
|
|
max_nc=256,
|
|
num_res_blocks=2,
|
|
use_spect=False):
|
|
super(EditingNet, self).__init__()
|
|
|
|
nonlinearity = nn.LeakyReLU(0.1)
|
|
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
|
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
|
self.descriptor_nc = descriptor_nc
|
|
|
|
|
|
self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs)
|
|
self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
|
|
|
|
def forward(self, input_image, warp_image, descriptor):
|
|
x = torch.cat([input_image, warp_image], 1)
|
|
x = self.encoder(x)
|
|
gen_image = self.decoder(x, descriptor)
|
|
return gen_image
|
|
|