|
import functools
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from models.transformer import RETURNX, Transformer
|
|
from models.base_blocks import Conv2d, LayerNorm2d, FirstBlock2d, DownBlock2d, UpBlock2d, \
|
|
FFCADAINResBlocks, Jump, FinalBlock2d
|
|
|
|
|
|
class Visual_Encoder(nn.Module):
|
|
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(Visual_Encoder, self).__init__()
|
|
self.layers = layers
|
|
self.first_inp = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
|
self.first_ref = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
|
for i in range(layers):
|
|
in_channels = min(ngf*(2**i), img_f)
|
|
out_channels = min(ngf*(2**(i+1)), img_f)
|
|
model_ref = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
|
model_inp = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
|
if i < 2:
|
|
ca_layer = RETURNX()
|
|
else:
|
|
ca_layer = Transformer(2**(i+1) * ngf,2,4,ngf,ngf*4)
|
|
setattr(self, 'ca' + str(i), ca_layer)
|
|
setattr(self, 'ref_down' + str(i), model_ref)
|
|
setattr(self, 'inp_down' + str(i), model_inp)
|
|
self.output_nc = out_channels * 2
|
|
|
|
def forward(self, maskGT, ref):
|
|
x_maskGT, x_ref = self.first_inp(maskGT), self.first_ref(ref)
|
|
out=[x_maskGT]
|
|
for i in range(self.layers):
|
|
model_ref = getattr(self, 'ref_down'+str(i))
|
|
model_inp = getattr(self, 'inp_down'+str(i))
|
|
ca_layer = getattr(self, 'ca'+str(i))
|
|
x_maskGT, x_ref = model_inp(x_maskGT), model_ref(x_ref)
|
|
x_maskGT = ca_layer(x_maskGT, x_ref)
|
|
if i < self.layers - 1:
|
|
out.append(x_maskGT)
|
|
else:
|
|
out.append(torch.cat([x_maskGT, x_ref], dim=1))
|
|
return out
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(Decoder, self).__init__()
|
|
self.layers = layers
|
|
for i in range(layers)[::-1]:
|
|
if i == layers-1:
|
|
in_channels = ngf*(2**(i+1)) * 2
|
|
else:
|
|
in_channels = min(ngf*(2**(i+1)), img_f)
|
|
out_channels = min(ngf*(2**i), img_f)
|
|
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
|
res = FFCADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
|
|
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
|
|
|
|
setattr(self, 'up' + str(i), up)
|
|
setattr(self, 'res' + str(i), res)
|
|
setattr(self, 'jump' + str(i), jump)
|
|
|
|
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'sigmoid')
|
|
self.output_nc = out_channels
|
|
|
|
def forward(self, x, z):
|
|
out = x.pop()
|
|
for i in range(self.layers)[::-1]:
|
|
res_model = getattr(self, 'res' + str(i))
|
|
up_model = getattr(self, 'up' + str(i))
|
|
jump_model = getattr(self, 'jump' + str(i))
|
|
out = res_model(out, z)
|
|
out = up_model(out)
|
|
out = jump_model(x.pop()) + out
|
|
out_image = self.final(out)
|
|
return out_image
|
|
|
|
|
|
class LNet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
image_nc=3,
|
|
descriptor_nc=512,
|
|
layer=3,
|
|
base_nc=64,
|
|
max_nc=512,
|
|
num_res_blocks=9,
|
|
use_spect=True,
|
|
encoder=Visual_Encoder,
|
|
decoder=Decoder
|
|
):
|
|
super(LNet, self).__init__()
|
|
|
|
nonlinearity = nn.LeakyReLU(0.1)
|
|
norm_layer = functools.partial(LayerNorm2d, affine=True)
|
|
kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect}
|
|
self.descriptor_nc = descriptor_nc
|
|
|
|
self.encoder = encoder(image_nc, base_nc, max_nc, layer, **kwargs)
|
|
self.decoder = decoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs)
|
|
self.audio_encoder = nn.Sequential(
|
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
|
|
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
|
Conv2d(512, descriptor_nc, kernel_size=1, stride=1, padding=0),
|
|
)
|
|
|
|
def forward(self, audio_sequences, face_sequences):
|
|
B = audio_sequences.size(0)
|
|
input_dim_size = len(face_sequences.size())
|
|
if input_dim_size > 4:
|
|
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
|
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
|
|
cropped, ref = torch.split(face_sequences, 3, dim=1)
|
|
|
|
vis_feat = self.encoder(cropped, ref)
|
|
audio_feat = self.audio_encoder(audio_sequences)
|
|
_outputs = self.decoder(vis_feat, audio_feat)
|
|
|
|
if input_dim_size > 4:
|
|
_outputs = torch.split(_outputs, B, dim=0)
|
|
outputs = torch.stack(_outputs, dim=2)
|
|
else:
|
|
outputs = _outputs
|
|
return outputs |