|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn.modules.batchnorm import BatchNorm2d
|
|
from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm
|
|
|
|
from models.ffc import FFC
|
|
from basicsr.archs.arch_util import default_init_weights
|
|
|
|
|
|
class Conv2d(nn.Module):
|
|
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.conv_block = nn.Sequential(
|
|
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
|
nn.BatchNorm2d(cout)
|
|
)
|
|
self.act = nn.ReLU()
|
|
self.residual = residual
|
|
|
|
def forward(self, x):
|
|
out = self.conv_block(x)
|
|
if self.residual:
|
|
out += x
|
|
return self.act(out)
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, in_channels, out_channels, mode='down'):
|
|
super(ResBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
|
|
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
|
|
self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
|
if mode == 'down':
|
|
self.scale_factor = 0.5
|
|
elif mode == 'up':
|
|
self.scale_factor = 2
|
|
|
|
def forward(self, x):
|
|
out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
|
|
|
|
out = F.interpolate(out, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
|
out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
|
|
|
|
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear', align_corners=False)
|
|
skip = self.skip(x)
|
|
out = out + skip
|
|
return out
|
|
|
|
|
|
class LayerNorm2d(nn.Module):
|
|
def __init__(self, n_out, affine=True):
|
|
super(LayerNorm2d, self).__init__()
|
|
self.n_out = n_out
|
|
self.affine = affine
|
|
|
|
if self.affine:
|
|
self.weight = nn.Parameter(torch.ones(n_out, 1, 1))
|
|
self.bias = nn.Parameter(torch.zeros(n_out, 1, 1))
|
|
|
|
def forward(self, x):
|
|
normalized_shape = x.size()[1:]
|
|
if self.affine:
|
|
return F.layer_norm(x, normalized_shape, \
|
|
self.weight.expand(normalized_shape),
|
|
self.bias.expand(normalized_shape))
|
|
else:
|
|
return F.layer_norm(x, normalized_shape)
|
|
|
|
|
|
def spectral_norm(module, use_spect=True):
|
|
if use_spect:
|
|
return SpectralNorm(module)
|
|
else:
|
|
return module
|
|
|
|
|
|
class FirstBlock2d(nn.Module):
|
|
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(FirstBlock2d, self).__init__()
|
|
kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3}
|
|
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
|
|
|
if type(norm_layer) == type(None):
|
|
self.model = nn.Sequential(conv, nonlinearity)
|
|
else:
|
|
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
|
|
|
|
def forward(self, x):
|
|
out = self.model(x)
|
|
return out
|
|
|
|
|
|
class DownBlock2d(nn.Module):
|
|
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(DownBlock2d, self).__init__()
|
|
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
|
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
|
pool = nn.AvgPool2d(kernel_size=(2, 2))
|
|
|
|
if type(norm_layer) == type(None):
|
|
self.model = nn.Sequential(conv, nonlinearity, pool)
|
|
else:
|
|
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool)
|
|
|
|
def forward(self, x):
|
|
out = self.model(x)
|
|
return out
|
|
|
|
|
|
class UpBlock2d(nn.Module):
|
|
def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(UpBlock2d, self).__init__()
|
|
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
|
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
|
if type(norm_layer) == type(None):
|
|
self.model = nn.Sequential(conv, nonlinearity)
|
|
else:
|
|
self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity)
|
|
|
|
def forward(self, x):
|
|
out = self.model(F.interpolate(x, scale_factor=2))
|
|
return out
|
|
|
|
|
|
class ADAIN(nn.Module):
|
|
def __init__(self, norm_nc, feature_nc):
|
|
super().__init__()
|
|
|
|
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
|
|
|
|
nhidden = 128
|
|
use_bias=True
|
|
|
|
self.mlp_shared = nn.Sequential(
|
|
nn.Linear(feature_nc, nhidden, bias=use_bias),
|
|
nn.ReLU()
|
|
)
|
|
self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias)
|
|
self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias)
|
|
|
|
def forward(self, x, feature):
|
|
|
|
|
|
normalized = self.param_free_norm(x)
|
|
|
|
feature = feature.view(feature.size(0), -1)
|
|
actv = self.mlp_shared(feature)
|
|
gamma = self.mlp_gamma(actv)
|
|
beta = self.mlp_beta(actv)
|
|
|
|
|
|
gamma = gamma.view(*gamma.size()[:2], 1,1)
|
|
beta = beta.view(*beta.size()[:2], 1,1)
|
|
out = normalized * (1 + gamma) + beta
|
|
return out
|
|
|
|
|
|
class FineADAINResBlock2d(nn.Module):
|
|
"""
|
|
Define an Residual block for different types
|
|
"""
|
|
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(FineADAINResBlock2d, self).__init__()
|
|
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
|
self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
|
self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
|
self.norm1 = ADAIN(input_nc, feature_nc)
|
|
self.norm2 = ADAIN(input_nc, feature_nc)
|
|
self.actvn = nonlinearity
|
|
|
|
def forward(self, x, z):
|
|
dx = self.actvn(self.norm1(self.conv1(x), z))
|
|
dx = self.norm2(self.conv2(x), z)
|
|
out = dx + x
|
|
return out
|
|
|
|
|
|
class FineADAINResBlocks(nn.Module):
|
|
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(FineADAINResBlocks, self).__init__()
|
|
self.num_block = num_block
|
|
for i in range(num_block):
|
|
model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
|
|
setattr(self, 'res'+str(i), model)
|
|
|
|
def forward(self, x, z):
|
|
for i in range(self.num_block):
|
|
model = getattr(self, 'res'+str(i))
|
|
x = model(x, z)
|
|
return x
|
|
|
|
|
|
class ADAINEncoderBlock(nn.Module):
|
|
def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(ADAINEncoderBlock, self).__init__()
|
|
kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1}
|
|
kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
|
|
|
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect)
|
|
self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect)
|
|
|
|
|
|
self.norm_0 = ADAIN(input_nc, feature_nc)
|
|
self.norm_1 = ADAIN(output_nc, feature_nc)
|
|
self.actvn = nonlinearity
|
|
|
|
def forward(self, x, z):
|
|
x = self.conv_0(self.actvn(self.norm_0(x, z)))
|
|
x = self.conv_1(self.actvn(self.norm_1(x, z)))
|
|
return x
|
|
|
|
|
|
class ADAINDecoderBlock(nn.Module):
|
|
def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(ADAINDecoderBlock, self).__init__()
|
|
|
|
self.actvn = nonlinearity
|
|
hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc
|
|
|
|
kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1}
|
|
if use_transpose:
|
|
kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1}
|
|
else:
|
|
kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1}
|
|
|
|
|
|
self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect)
|
|
if use_transpose:
|
|
self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect)
|
|
self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect)
|
|
else:
|
|
self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect),
|
|
nn.Upsample(scale_factor=2))
|
|
self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect),
|
|
nn.Upsample(scale_factor=2))
|
|
|
|
self.norm_0 = ADAIN(input_nc, feature_nc)
|
|
self.norm_1 = ADAIN(hidden_nc, feature_nc)
|
|
self.norm_s = ADAIN(input_nc, feature_nc)
|
|
|
|
def forward(self, x, z):
|
|
x_s = self.shortcut(x, z)
|
|
dx = self.conv_0(self.actvn(self.norm_0(x, z)))
|
|
dx = self.conv_1(self.actvn(self.norm_1(dx, z)))
|
|
out = x_s + dx
|
|
return out
|
|
|
|
def shortcut(self, x, z):
|
|
x_s = self.conv_s(self.actvn(self.norm_s(x, z)))
|
|
return x_s
|
|
|
|
|
|
class FineEncoder(nn.Module):
|
|
"""docstring for Encoder"""
|
|
def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(FineEncoder, self).__init__()
|
|
self.layers = layers
|
|
self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect)
|
|
for i in range(layers):
|
|
in_channels = min(ngf*(2**i), img_f)
|
|
out_channels = min(ngf*(2**(i+1)), img_f)
|
|
model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
|
setattr(self, 'down' + str(i), model)
|
|
self.output_nc = out_channels
|
|
|
|
def forward(self, x):
|
|
x = self.first(x)
|
|
out=[x]
|
|
for i in range(self.layers):
|
|
model = getattr(self, 'down'+str(i))
|
|
x = model(x)
|
|
out.append(x)
|
|
return out
|
|
|
|
|
|
class FineDecoder(nn.Module):
|
|
"""docstring for FineDecoder"""
|
|
def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(FineDecoder, self).__init__()
|
|
self.layers = layers
|
|
for i in range(layers)[::-1]:
|
|
in_channels = min(ngf*(2**(i+1)), img_f)
|
|
out_channels = min(ngf*(2**i), img_f)
|
|
up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect)
|
|
res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect)
|
|
jump = Jump(out_channels, norm_layer, nonlinearity, use_spect)
|
|
setattr(self, 'up' + str(i), up)
|
|
setattr(self, 'res' + str(i), res)
|
|
setattr(self, 'jump' + str(i), jump)
|
|
self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh')
|
|
self.output_nc = out_channels
|
|
|
|
def forward(self, x, z):
|
|
out = x.pop()
|
|
for i in range(self.layers)[::-1]:
|
|
res_model = getattr(self, 'res' + str(i))
|
|
up_model = getattr(self, 'up' + str(i))
|
|
jump_model = getattr(self, 'jump' + str(i))
|
|
out = res_model(out, z)
|
|
out = up_model(out)
|
|
out = jump_model(x.pop()) + out
|
|
out_image = self.final(out)
|
|
return out_image
|
|
|
|
|
|
class ADAINEncoder(nn.Module):
|
|
def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(ADAINEncoder, self).__init__()
|
|
self.layers = layers
|
|
self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3)
|
|
for i in range(layers):
|
|
in_channels = min(ngf * (2**i), img_f)
|
|
out_channels = min(ngf *(2**(i+1)), img_f)
|
|
model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect)
|
|
setattr(self, 'encoder' + str(i), model)
|
|
self.output_nc = out_channels
|
|
|
|
def forward(self, x, z):
|
|
out = self.input_layer(x)
|
|
out_list = [out]
|
|
for i in range(self.layers):
|
|
model = getattr(self, 'encoder' + str(i))
|
|
out = model(out, z)
|
|
out_list.append(out)
|
|
return out_list
|
|
|
|
|
|
class ADAINDecoder(nn.Module):
|
|
"""docstring for ADAINDecoder"""
|
|
def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True,
|
|
nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
|
|
super(ADAINDecoder, self).__init__()
|
|
self.encoder_layers = encoder_layers
|
|
self.decoder_layers = decoder_layers
|
|
self.skip_connect = skip_connect
|
|
use_transpose = True
|
|
for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]:
|
|
in_channels = min(ngf * (2**(i+1)), img_f)
|
|
in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels
|
|
out_channels = min(ngf * (2**i), img_f)
|
|
model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect)
|
|
setattr(self, 'decoder' + str(i), model)
|
|
self.output_nc = out_channels*2 if self.skip_connect else out_channels
|
|
|
|
def forward(self, x, z):
|
|
out = x.pop() if self.skip_connect else x
|
|
for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]:
|
|
model = getattr(self, 'decoder' + str(i))
|
|
out = model(out, z)
|
|
out = torch.cat([out, x.pop()], 1) if self.skip_connect else out
|
|
return out
|
|
|
|
|
|
class ADAINHourglass(nn.Module):
|
|
def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect):
|
|
super(ADAINHourglass, self).__init__()
|
|
self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect)
|
|
self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect)
|
|
self.output_nc = self.decoder.output_nc
|
|
|
|
def forward(self, x, z):
|
|
return self.decoder(self.encoder(x, z), z)
|
|
|
|
|
|
class FineADAINLama(nn.Module):
|
|
def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(FineADAINLama, self).__init__()
|
|
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
|
self.actvn = nonlinearity
|
|
ratio_gin = 0.75
|
|
ratio_gout = 0.75
|
|
self.ffc = FFC(input_nc, input_nc, 3,
|
|
ratio_gin, ratio_gout, 1, 1, 1,
|
|
1, False, False, padding_type='reflect')
|
|
global_channels = int(input_nc * ratio_gout)
|
|
self.bn_l = ADAIN(input_nc - global_channels, feature_nc)
|
|
self.bn_g = ADAIN(global_channels, feature_nc)
|
|
|
|
def forward(self, x, z):
|
|
x_l, x_g = self.ffc(x)
|
|
x_l = self.actvn(self.bn_l(x_l,z))
|
|
x_g = self.actvn(self.bn_g(x_g,z))
|
|
return x_l, x_g
|
|
|
|
|
|
class FFCResnetBlock(nn.Module):
|
|
def __init__(self, dim, feature_dim, padding_type='reflect', norm_layer=BatchNorm2d, activation_layer=nn.ReLU, dilation=1,
|
|
spatial_transform_kwargs=None, inline=False, **conv_kwargs):
|
|
super().__init__()
|
|
self.conv1 = FineADAINLama(dim, feature_dim, **conv_kwargs)
|
|
self.conv2 = FineADAINLama(dim, feature_dim, **conv_kwargs)
|
|
self.inline = True
|
|
|
|
def forward(self, x, z):
|
|
if self.inline:
|
|
x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
|
|
else:
|
|
x_l, x_g = x if type(x) is tuple else (x, 0)
|
|
|
|
id_l, id_g = x_l, x_g
|
|
x_l, x_g = self.conv1((x_l, x_g), z)
|
|
x_l, x_g = self.conv2((x_l, x_g), z)
|
|
|
|
x_l, x_g = id_l + x_l, id_g + x_g
|
|
out = x_l, x_g
|
|
if self.inline:
|
|
out = torch.cat(out, dim=1)
|
|
return out
|
|
|
|
|
|
class FFCADAINResBlocks(nn.Module):
|
|
def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(FFCADAINResBlocks, self).__init__()
|
|
self.num_block = num_block
|
|
for i in range(num_block):
|
|
model = FFCResnetBlock(input_nc, feature_nc, norm_layer, nonlinearity, use_spect)
|
|
setattr(self, 'res'+str(i), model)
|
|
|
|
def forward(self, x, z):
|
|
for i in range(self.num_block):
|
|
model = getattr(self, 'res'+str(i))
|
|
x = model(x, z)
|
|
return x
|
|
|
|
|
|
class Jump(nn.Module):
|
|
def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False):
|
|
super(Jump, self).__init__()
|
|
kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1}
|
|
conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect)
|
|
if type(norm_layer) == type(None):
|
|
self.model = nn.Sequential(conv, nonlinearity)
|
|
else:
|
|
self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity)
|
|
|
|
def forward(self, x):
|
|
out = self.model(x)
|
|
return out
|
|
|
|
|
|
class FinalBlock2d(nn.Module):
|
|
def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'):
|
|
super(FinalBlock2d, self).__init__()
|
|
kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3}
|
|
conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect)
|
|
if tanh_or_sigmoid == 'sigmoid':
|
|
out_nonlinearity = nn.Sigmoid()
|
|
else:
|
|
out_nonlinearity = nn.Tanh()
|
|
self.model = nn.Sequential(conv, out_nonlinearity)
|
|
|
|
def forward(self, x):
|
|
out = self.model(x)
|
|
return out
|
|
|
|
|
|
class ModulatedConv2d(nn.Module):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
num_style_feat,
|
|
demodulate=True,
|
|
sample_mode=None,
|
|
eps=1e-8):
|
|
super(ModulatedConv2d, self).__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.kernel_size = kernel_size
|
|
self.demodulate = demodulate
|
|
self.sample_mode = sample_mode
|
|
self.eps = eps
|
|
|
|
|
|
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
|
|
|
|
default_init_weights(self.modulation, scale=1, bias_fill=1, a=0, mode='fan_in', nonlinearity='linear')
|
|
|
|
self.weight = nn.Parameter(
|
|
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size) /
|
|
math.sqrt(in_channels * kernel_size**2))
|
|
self.padding = kernel_size // 2
|
|
|
|
def forward(self, x, style):
|
|
b, c, h, w = x.shape
|
|
style = self.modulation(style).view(b, 1, c, 1, 1)
|
|
weight = self.weight * style
|
|
|
|
if self.demodulate:
|
|
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
|
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
|
|
|
weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
|
|
|
|
|
|
if self.sample_mode == 'upsample':
|
|
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
|
elif self.sample_mode == 'downsample':
|
|
x = F.interpolate(x, scale_factor=0.5, mode='bilinear', align_corners=False)
|
|
|
|
b, c, h, w = x.shape
|
|
x = x.view(1, b * c, h, w)
|
|
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
|
out = out.view(b, self.out_channels, *out.shape[2:4])
|
|
return out
|
|
|
|
def __repr__(self):
|
|
return (f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, '
|
|
f'kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})')
|
|
|
|
|
|
class StyleConv(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None):
|
|
super(StyleConv, self).__init__()
|
|
self.modulated_conv = ModulatedConv2d(
|
|
in_channels, out_channels, kernel_size, num_style_feat, demodulate=demodulate, sample_mode=sample_mode)
|
|
self.weight = nn.Parameter(torch.zeros(1))
|
|
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
|
|
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
def forward(self, x, style, noise=None):
|
|
|
|
out = self.modulated_conv(x, style) * 2**0.5
|
|
|
|
if noise is None:
|
|
b, _, h, w = out.shape
|
|
noise = out.new_empty(b, 1, h, w).normal_()
|
|
out = out + self.weight * noise
|
|
|
|
out = out + self.bias
|
|
|
|
out = self.activate(out)
|
|
return out
|
|
|
|
|
|
class ToRGB(nn.Module):
|
|
def __init__(self, in_channels, num_style_feat, upsample=True):
|
|
super(ToRGB, self).__init__()
|
|
self.upsample = upsample
|
|
self.modulated_conv = ModulatedConv2d(
|
|
in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
|
|
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
|
|
|
def forward(self, x, style, skip=None):
|
|
out = self.modulated_conv(x, style)
|
|
out = out + self.bias
|
|
if skip is not None:
|
|
if self.upsample:
|
|
skip = F.interpolate(skip, scale_factor=2, mode='bilinear', align_corners=False)
|
|
out = out + skip
|
|
return out |