shopsmart / predict.py
Spanicin's picture
Upload 11 files
6764da3 verified
"""run bash scripts/download_models.sh first to prepare the weights file"""
import os
import shutil
from argparse import Namespace
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
from cog import BasePredictor, Input, Path
checkpoints = "checkpoints"
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
device = "cuda"
path_of_lm_croper = os.path.join(
checkpoints, "shape_predictor_68_face_landmarks.dat"
)
path_of_net_recon_model = os.path.join(checkpoints, "epoch_20.pth")
dir_of_BFM_fitting = os.path.join(checkpoints, "BFM_Fitting")
wav2lip_checkpoint = os.path.join(checkpoints, "wav2lip.pth")
audio2pose_checkpoint = os.path.join(checkpoints, "auido2pose_00140-model.pth")
audio2pose_yaml_path = os.path.join("src", "config", "auido2pose.yaml")
audio2exp_checkpoint = os.path.join(checkpoints, "auido2exp_00300-model.pth")
audio2exp_yaml_path = os.path.join("src", "config", "auido2exp.yaml")
free_view_checkpoint = os.path.join(
checkpoints, "facevid2vid_00189-model.pth.tar"
)
# init model
self.preprocess_model = CropAndExtract(
path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device
)
self.audio_to_coeff = Audio2Coeff(
audio2pose_checkpoint,
audio2pose_yaml_path,
audio2exp_checkpoint,
audio2exp_yaml_path,
wav2lip_checkpoint,
device,
)
self.animate_from_coeff = {
"full": AnimateFromCoeff(
free_view_checkpoint,
os.path.join(checkpoints, "mapping_00109-model.pth.tar"),
os.path.join("src", "config", "facerender_still.yaml"),
device,
),
"others": AnimateFromCoeff(
free_view_checkpoint,
os.path.join(checkpoints, "mapping_00229-model.pth.tar"),
os.path.join("src", "config", "facerender.yaml"),
device,
),
}
def predict(
self,
source_image: Path = Input(
description="Upload the source image, it can be video.mp4 or picture.png",
),
driven_audio: Path = Input(
description="Upload the driven audio, accepts .wav and .mp4 file",
),
enhancer: str = Input(
description="Choose a face enhancer",
choices=["gfpgan", "RestoreFormer"],
default="gfpgan",
),
preprocess: str = Input(
description="how to preprocess the images",
choices=["crop", "resize", "full"],
default="full",
),
ref_eyeblink: Path = Input(
description="path to reference video providing eye blinking",
default=None,
),
ref_pose: Path = Input(
description="path to reference video providing pose",
default=None,
),
still: bool = Input(
description="can crop back to the original videos for the full body aniamtion when preprocess is full",
default=True,
),
) -> Path:
"""Run a single prediction on the model"""
animate_from_coeff = (
self.animate_from_coeff["full"]
if preprocess == "full"
else self.animate_from_coeff["others"]
)
args = load_default()
args.pic_path = str(source_image)
args.audio_path = str(driven_audio)
device = "cuda"
args.still = still
args.ref_eyeblink = None if ref_eyeblink is None else str(ref_eyeblink)
args.ref_pose = None if ref_pose is None else str(ref_pose)
# crop image and extract 3dmm from image
results_dir = "results"
if os.path.exists(results_dir):
shutil.rmtree(results_dir)
os.makedirs(results_dir)
first_frame_dir = os.path.join(results_dir, "first_frame_dir")
os.makedirs(first_frame_dir)
print("3DMM Extraction for source image")
first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(
args.pic_path, first_frame_dir, preprocess, source_image_flag=True
)
if first_coeff_path is None:
print("Can't get the coeffs of the input")
return
if ref_eyeblink is not None:
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[
0
]
ref_eyeblink_frame_dir = os.path.join(results_dir, ref_eyeblink_videoname)
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
print("3DMM Extraction for the reference video providing eye blinking")
ref_eyeblink_coeff_path, _, _ = self.preprocess_model.generate(
ref_eyeblink, ref_eyeblink_frame_dir
)
else:
ref_eyeblink_coeff_path = None
if ref_pose is not None:
if ref_pose == ref_eyeblink:
ref_pose_coeff_path = ref_eyeblink_coeff_path
else:
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
ref_pose_frame_dir = os.path.join(results_dir, ref_pose_videoname)
os.makedirs(ref_pose_frame_dir, exist_ok=True)
print("3DMM Extraction for the reference video providing pose")
ref_pose_coeff_path, _, _ = self.preprocess_model.generate(
ref_pose, ref_pose_frame_dir
)
else:
ref_pose_coeff_path = None
# audio2ceoff
batch = get_data(
first_coeff_path,
args.audio_path,
device,
ref_eyeblink_coeff_path,
still=still,
)
coeff_path = self.audio_to_coeff.generate(
batch, results_dir, args.pose_style, ref_pose_coeff_path
)
# coeff2video
print("coeff2video")
data = get_facerender_data(
coeff_path,
crop_pic_path,
first_coeff_path,
args.audio_path,
args.batch_size,
args.input_yaw,
args.input_pitch,
args.input_roll,
expression_scale=args.expression_scale,
still_mode=still,
preprocess=preprocess,
)
animate_from_coeff.generate(
data, results_dir, args.pic_path, crop_info,
enhancer=enhancer, background_enhancer=args.background_enhancer,
preprocess=preprocess)
output = "/tmp/out.mp4"
mp4_path = os.path.join(results_dir, [f for f in os.listdir(results_dir) if "enhanced.mp4" in f][0])
shutil.copy(mp4_path, output)
return Path(output)
def load_default():
return Namespace(
pose_style=0,
batch_size=2,
expression_scale=1.0,
input_yaw=None,
input_pitch=None,
input_roll=None,
background_enhancer=None,
face3dvis=False,
net_recon="resnet50",
init_path=None,
use_last_fc=False,
bfm_folder="./checkpoints/BFM_Fitting/",
bfm_model="BFM_model_front.mat",
focal=1015.0,
center=112.0,
camera_d=10.0,
z_near=5.0,
z_far=15.0,
)