File size: 14,469 Bytes
fcb0cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0490dd
 
 
da90319
c0490dd
fcb0cff
c0490dd
 
 
baa503f
fcb0cff
 
 
 
 
 
 
 
c0490dd
fcb0cff
 
c0490dd
fcb0cff
 
 
 
c0490dd
 
 
 
 
fcb0cff
 
baa503f
 
 
 
b1b6827
e5efe2c
 
 
b1b6827
e5efe2c
b1b6827
e5efe2c
 
c0490dd
 
 
 
 
e5efe2c
c0490dd
 
 
 
 
 
fcb0cff
c0490dd
 
bfd8827
 
fcb0cff
c0490dd
fcb0cff
c0490dd
 
bc47113
 
c0490dd
 
bfd8827
c0490dd
fcb0cff
c0490dd
 
 
 
fcb0cff
c0490dd
fcb0cff
 
c0490dd
fcb0cff
c0490dd
 
 
fcb0cff
c0490dd
 
fcb0cff
c0490dd
 
 
bc47113
c0490dd
 
 
 
 
 
 
fcb0cff
bfd8827
fcb0cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfd8827
fcb0cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0490dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# import logging
# import random
# import warnings
# import os
# import gradio as gr
# import numpy as np
# import spaces
# import torch
# from diffusers import FluxControlNetModel
# from diffusers.pipelines import FluxControlNetPipeline
# from gradio_imageslider import ImageSlider
# from PIL import Image
# from huggingface_hub import snapshot_download

# css = """
# #col-container {
#     margin: 0 auto;
#     max-width: 512px;
# }
# """

# if torch.cuda.is_available():
#     power_device = "GPU"
#     device = "cuda"
# else:
#     power_device = "CPU"
#     device = "cpu"


# huggingface_token = os.getenv("HUGGINFACE_TOKEN")

# model_path = snapshot_download(
#     repo_id="black-forest-labs/FLUX.1-dev", 
#     repo_type="model", 
#     ignore_patterns=["*.md", "*..gitattributes"],
#     local_dir="FLUX.1-dev",
#     token=huggingface_token, # type a new token-id.
# )


# # Load pipeline
# controlnet = FluxControlNetModel.from_pretrained(
#     "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
# ).to(device)
# pipe = FluxControlNetPipeline.from_pretrained(
#     model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
# )
# pipe.to(device)

# MAX_SEED = 1000000
# MAX_PIXEL_BUDGET = 1024 * 1024


# def process_input(input_image, upscale_factor, **kwargs):
#     w, h = input_image.size
#     w_original, h_original = w, h
#     aspect_ratio = w / h

#     was_resized = False

#     if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
#         warnings.warn(
#             f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
#         )
#         gr.Info(
#             f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
#         )
#         input_image = input_image.resize(
#             (
#                 int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
#                 int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
#             )
#         )
#         was_resized = True

#     # resize to multiple of 8
#     w, h = input_image.size
#     w = w - w % 8
#     h = h - h % 8

#     return input_image.resize((w, h)), w_original, h_original, was_resized


# @spaces.GPU#(duration=42)
# def infer(
#     seed,
#     randomize_seed,
#     input_image,
#     num_inference_steps,
#     upscale_factor,
#     controlnet_conditioning_scale,
#     progress=gr.Progress(track_tqdm=True),
# ):
#     if randomize_seed:
#         seed = random.randint(0, MAX_SEED)
#     true_input_image = input_image
#     input_image, w_original, h_original, was_resized = process_input(
#         input_image, upscale_factor
#     )

#     # rescale with upscale factor
#     w, h = input_image.size
#     control_image = input_image.resize((w * upscale_factor, h * upscale_factor))

#     generator = torch.Generator().manual_seed(seed)

#     gr.Info("Upscaling image...")
#     image = pipe(
#         prompt="",
#         control_image=control_image,
#         controlnet_conditioning_scale=controlnet_conditioning_scale,
#         num_inference_steps=num_inference_steps,
#         guidance_scale=3.5,
#         height=control_image.size[1],
#         width=control_image.size[0],
#         generator=generator,
#     ).images[0]

#     if was_resized:
#         gr.Info(
#             f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
#         )

#     # resize to target desired size
#     image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
#     image.save("output.jpg")
#     # convert to numpy
#     return [true_input_image, image, seed]


# with gr.Blocks(css=css) as demo:
#     # with gr.Column(elem_id="col-container"):
#     gr.Markdown(
#         f"""
#     # ⚡ Flux.1-dev Upscaler ControlNet ⚡
#     This is an interactive demo of [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler) taking as input a low resolution image to generate a high resolution image.
#     Currently running on {power_device}.

#     *Note*: Even though the model can handle higher resolution images, due to GPU memory constraints, this demo was limited to a generated output not exceeding a pixel budget of 1024x1024. If the requested size exceeds that limit, the input will be first resized keeping the aspect ratio such that the output of the controlNet model does not exceed the allocated pixel budget. The output is then resized to the targeted shape using a simple resizing. This may explain some artifacts for high resolution input. To adress this, run the demo locally or consider implementing a tiling strategy. Happy upscaling! 🚀
#     """
#     )

#     with gr.Row():
#         run_button = gr.Button(value="Run")

#     with gr.Row():
#         with gr.Column(scale=4):
#             input_im = gr.Image(label="Input Image", type="pil")
#         with gr.Column(scale=1):
#             num_inference_steps = gr.Slider(
#                 label="Number of Inference Steps",
#                 minimum=8,
#                 maximum=50,
#                 step=1,
#                 value=28,
#             )
#             upscale_factor = gr.Slider(
#                 label="Upscale Factor",
#                 minimum=1,
#                 maximum=4,
#                 step=1,
#                 value=4,
#             )
#             controlnet_conditioning_scale = gr.Slider(
#                 label="Controlnet Conditioning Scale",
#                 minimum=0.1,
#                 maximum=1.5,
#                 step=0.1,
#                 value=0.6,
#             )
#             seed = gr.Slider(
#                 label="Seed",
#                 minimum=0,
#                 maximum=MAX_SEED,
#                 step=1,
#                 value=42,
#             )

#             randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

#     with gr.Row():
#         result = ImageSlider(label="Input / Output", type="pil", interactive=True)

#     examples = gr.Examples(
#         examples=[
#         #    [42, False, "examples/image_1.jpg", 28, 4, 0.6],
#             [42, False, "examples/image_2.jpg", 28, 4, 0.6],
#         #    [42, False, "examples/image_3.jpg", 28, 4, 0.6],
#             [42, False, "examples/image_4.jpg", 28, 4, 0.6],
#         #    [42, False, "examples/image_5.jpg", 28, 4, 0.6],
#         #    [42, False, "examples/image_6.jpg", 28, 4, 0.6],
#         ],
#         inputs=[
#             seed,
#             randomize_seed,
#             input_im,
#             num_inference_steps,
#             upscale_factor,
#             controlnet_conditioning_scale,
#         ],
#         fn=infer,
#         outputs=result,
#         cache_examples="lazy",
#     )

#     # examples = gr.Examples(
#     #     examples=[
#     #         #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
#     #         [42, False, "examples/image_2.jpg", 28, 4, 0.6],
#     #         #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
#     #         #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
#     #         [42, False, "examples/image_5.jpg", 28, 4, 0.6],
#     #         [42, False, "examples/image_6.jpg", 28, 4, 0.6],
#     #         [42, False, "examples/image_7.jpg", 28, 4, 0.6],
#     #     ],
#     #     inputs=[
#     #         seed,
#     #         randomize_seed,
#     #         input_im,
#     #         num_inference_steps,
#     #         upscale_factor,
#     #         controlnet_conditioning_scale,
#     #     ],
#     # )

#     gr.Markdown("**Disclaimer:**")
#     gr.Markdown(
#         "This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
#     )
#     gr.on(
#         [run_button.click],
#         fn=infer,
#         inputs=[
#             seed,
#             randomize_seed,
#             input_im,
#             num_inference_steps,
#             upscale_factor,
#             controlnet_conditioning_scale,
#         ],
#         outputs=result,
#         show_api=False,
#         # show_progress="minimal",
#     )

# demo.queue().launch(share=False, show_api=False)






import logging
import random
import warnings
import os
import torch
import numpy as np
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from PIL import Image
from huggingface_hub import snapshot_download,login
import io
import base64
from flask import Flask, request, jsonify
from concurrent.futures import ThreadPoolExecutor
from flask_cors import CORS

app = Flask(__name__)
CORS(app)

# Add config to store base64 images
app.config['image_outputs'] = {}

# ThreadPoolExecutor for managing image processing threads
executor = ThreadPoolExecutor()

# Determine the device (GPU or CPU)
if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

# Load model from Huggingface Hub
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
if huggingface_token:
    login(token=huggingface_token)
else:
    print("Hugging Face token not found in environment variables.")
print(huggingface_token)
model_path = snapshot_download(
    repo_id="black-forest-labs/FLUX.1-dev", 
    repo_type="model", 
    ignore_patterns=["*.md", "*..gitattributes"],
    local_dir="FLUX.1-dev",
    token=huggingface_token
)

# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
    "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
pipe = FluxControlNetPipeline.from_pretrained(
    model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
)
pipe.to(device)

MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024

def process_input(input_image, upscale_factor):
    w, h = input_image.size
    aspect_ratio = w / h
    was_resized = False

    # Resize if input size exceeds the maximum pixel budget
    if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
        warnings.warn(f"Requested output image is too large. Resizing to fit within pixel budget.")
        input_image = input_image.resize(
            (
                int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
                int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
            )
        )
        was_resized = True

    # Adjust dimensions to be a multiple of 8
    w, h = input_image.size
    w = w - w % 8
    h = h - h % 8

    return input_image.resize((w, h)), was_resized

def run_inference(process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
    input_image, was_resized = process_input(input_image, upscale_factor)

    # Rescale image for ControlNet processing
    w, h = input_image.size
    control_image = input_image.resize((w * upscale_factor, h * upscale_factor))

    # Set the random generator for inference
    generator = torch.Generator().manual_seed(seed)

    # Perform inference using the pipeline
    image = pipe(
        prompt="",
        control_image=control_image,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        num_inference_steps=num_inference_steps,
        guidance_scale=3.5,
        height=control_image.size[1],
        width=control_image.size[0],
        generator=generator,
    ).images[0]

    # Resize output image back to the original dimensions if needed
    if was_resized:
        original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
        image = image.resize(original_size)

    # Convert the output image to base64
    buffered = io.BytesIO()
    image.save(buffered, format="JPEG")
    image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")

    # Store the result in the shared dictionary
    app.config['image_outputs'][process_id] = image_base64

@app.route('/infer', methods=['POST'])
def infer():
    data = request.json
    seed = data.get("seed", 42)
    randomize_seed = data.get("randomize_seed", True)
    num_inference_steps = data.get("num_inference_steps", 28)
    upscale_factor = data.get("upscale_factor", 4)
    controlnet_conditioning_scale = data.get("controlnet_conditioning_scale", 0.6)

    # Randomize seed if specified
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Load and process the input image
    input_image_data = base64.b64decode(data['input_image'])
    input_image = Image.open(io.BytesIO(input_image_data))

    # Create a unique process ID for this request
    process_id = str(random.randint(1000, 9999))

    # Set the status to 'in_progress'
    app.config['image_outputs'][process_id] = None

    # Run the inference in a separate thread
    executor.submit(run_inference, process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale)

    # Return the process ID
    return jsonify({
        "process_id": process_id,
        "message": "Processing started"
    })

# Modify status endpoint to receive process_id in request body
@app.route('/status', methods=['POST'])
def status():
    data = request.json
    process_id = data.get('process_id')

    # Check if process_id was provided
    if not process_id:
        return jsonify({
            "status": "error",
            "message": "Process ID is required"
        }), 400

    # Check if the process_id exists in the dictionary
    if process_id not in app.config['image_outputs']:
        return jsonify({
            "status": "error",
            "message": "Invalid process ID"
        }), 404

    # Check the status of the image processing
    image_base64 = app.config['image_outputs'][process_id]
    if image_base64 is None:
        return jsonify({
            "status": "in_progress"
        })
    else:
        return jsonify({
            "status": "completed",
            "output_image": image_base64
        })

if __name__ == '__main__':
    app.run(debug=True)