Spanicin commited on
Commit
a5422e0
·
verified ·
1 Parent(s): 4988ed2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -32,13 +32,13 @@ app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True,
32
  # ThreadPoolExecutor for managing image processing threads
33
  executor = ThreadPoolExecutor()
34
 
35
- # Determine the device (GPU or CPU)
36
- # if torch.cuda.is_available():
37
- # device = "cuda"
38
- # logger.info("CUDA is available. Using GPU.")
39
- # else:
40
- device = "cpu"
41
- # logger.info("CUDA is not available. Using CPU.")
42
 
43
  # Load model from Huggingface Hub
44
  huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
@@ -60,14 +60,15 @@ logger.info("Model downloaded to: %s", model_path)
60
 
61
  # Load pipeline
62
  logger.info('Loading ControlNet model.')
 
63
  controlnet = FluxControlNetModel.from_pretrained(
64
- "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
65
  ).to(device)
66
  logger.info("ControlNet model loaded successfully.")
67
 
68
  logger.info('Loading pipeline.')
69
  pipe = FluxControlNetPipeline.from_pretrained(
70
- model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
71
  ).to(device)
72
  logger.info("Pipeline loaded successfully.")
73
 
 
32
  # ThreadPoolExecutor for managing image processing threads
33
  executor = ThreadPoolExecutor()
34
 
35
+ #Determine the device (GPU or CPU)
36
+ if torch.cuda.is_available():
37
+ device = "cuda"
38
+ logger.info("CUDA is available. Using GPU.")
39
+ else:
40
+ device = "cpu"
41
+ logger.info("CUDA is not available. Using CPU.")
42
 
43
  # Load model from Huggingface Hub
44
  huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
 
60
 
61
  # Load pipeline
62
  logger.info('Loading ControlNet model.')
63
+ cache_dir = "./model_cache" # Customize your cache directory
64
  controlnet = FluxControlNetModel.from_pretrained(
65
+ "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.float16,cache_dir=cache_dir, low_cpu_mem_usage=True
66
  ).to(device)
67
  logger.info("ControlNet model loaded successfully.")
68
 
69
  logger.info('Loading pipeline.')
70
  pipe = FluxControlNetPipeline.from_pretrained(
71
+ model_path, controlnet=controlnet, torch_dtype=torch.float16,cache_dir=cache_dir, low_cpu_mem_usage=True
72
  ).to(device)
73
  logger.info("Pipeline loaded successfully.")
74