Spaces:
Sleeping
Sleeping
Upload 22 files
Browse files- .gitattributes +2 -0
- .idea/.gitignore +3 -0
- .idea/.name +1 -0
- .idea/FoodVision.iml +8 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/workspace.xml +39 -0
- .ipynb_checkpoints/model_training-checkpoint.ipynb +0 -0
- FoodVision.hdf5 +3 -0
- __pycache__/utils.cpython-311.pyc +0 -0
- helper_functions.py +288 -0
- model_training.ipynb +0 -0
- model_training.py +408 -0
- requirements.txt +11 -0
- sample_images/1190_pic_main02.jpg +0 -0
- sample_images/1652733217Grilled20Sirloin20Tri20Tip-a61e7e79a54448e2a68252ea222719c7.jpeg +0 -0
- sample_images/download.jpeg +0 -0
- sample_images/ian-dooley-TLD6iCOlyb0-unsplash.jpg +0 -0
- sample_images/istockphoto-945057664-170667a.jpg +0 -0
- sample_images/pizza.jpeg +0 -0
- sample_images/sushi.jpg +3 -0
- utils.py +119 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
FoodVision.hdf5 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
sample_images/sushi.jpg filter=lfs diff=lfs merge=lfs -text
|
.idea/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
.idea/.name
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
app.py
|
.idea/FoodVision.iml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="jdk" jdkName="Python 3.11" jdkType="Python SDK" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
</module>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/FoodVision.iml" filepath="$PROJECT_DIR$/.idea/FoodVision.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/workspace.xml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="AutoImportSettings">
|
4 |
+
<option name="autoReloadType" value="SELECTIVE" />
|
5 |
+
</component>
|
6 |
+
<component name="ChangeListManager">
|
7 |
+
<list default="true" id="1e69dd8b-dcce-48e7-b98e-c0f62bebe947" name="Changes" comment="" />
|
8 |
+
<option name="SHOW_DIALOG" value="false" />
|
9 |
+
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
10 |
+
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
11 |
+
<option name="LAST_RESOLUTION" value="IGNORE" />
|
12 |
+
</component>
|
13 |
+
<component name="MarkdownSettingsMigration">
|
14 |
+
<option name="stateVersion" value="1" />
|
15 |
+
</component>
|
16 |
+
<component name="ProjectId" id="2XIBP0z526oyXyOdRYelkE0iL3Y" />
|
17 |
+
<component name="ProjectViewState">
|
18 |
+
<option name="hideEmptyMiddlePackages" value="true" />
|
19 |
+
<option name="showLibraryContents" value="true" />
|
20 |
+
</component>
|
21 |
+
<component name="PropertiesComponent"><![CDATA[{
|
22 |
+
"keyToString": {
|
23 |
+
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
24 |
+
"RunOnceActivity.ShowReadmeOnStart": "true",
|
25 |
+
"settings.editor.selected.configurable": "preferences.pluginManager"
|
26 |
+
}
|
27 |
+
}]]></component>
|
28 |
+
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
29 |
+
<component name="TaskManager">
|
30 |
+
<task active="true" id="Default" summary="Default task">
|
31 |
+
<changelist id="1e69dd8b-dcce-48e7-b98e-c0f62bebe947" name="Changes" comment="" />
|
32 |
+
<created>1698306686202</created>
|
33 |
+
<option name="number" value="Default" />
|
34 |
+
<option name="presentableId" value="Default" />
|
35 |
+
<updated>1698306686202</updated>
|
36 |
+
</task>
|
37 |
+
<servers />
|
38 |
+
</component>
|
39 |
+
</project>
|
.ipynb_checkpoints/model_training-checkpoint.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
FoodVision.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32acc1c81bcc4513a3d399a8d4cf3b42657884899e6ac72669bd7dbe6eb92521
|
3 |
+
size 81206904
|
__pycache__/utils.cpython-311.pyc
ADDED
Binary file (2.44 kB). View file
|
|
helper_functions.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### We create a bunch of helpful functions throughout the course.
|
2 |
+
### Storing them here so they're easily accessible.
|
3 |
+
|
4 |
+
import tensorflow as tf
|
5 |
+
|
6 |
+
# Create a function to import an image and resize it to be able to be used with our model
|
7 |
+
def load_and_prep_image(filename, img_shape=224, scale=True):
|
8 |
+
"""
|
9 |
+
Reads in an image from filename, turns it into a tensor and reshapes into
|
10 |
+
(224, 224, 3).
|
11 |
+
|
12 |
+
Parameters
|
13 |
+
----------
|
14 |
+
filename (str): string filename of target image
|
15 |
+
img_shape (int): size to resize target image to, default 224
|
16 |
+
scale (bool): whether to scale pixel values to range(0, 1), default True
|
17 |
+
"""
|
18 |
+
# Read in the image
|
19 |
+
img = tf.io.read_file(filename)
|
20 |
+
# Decode it into a tensor
|
21 |
+
img = tf.image.decode_jpeg(img)
|
22 |
+
# Resize the image
|
23 |
+
img = tf.image.resize(img, [img_shape, img_shape])
|
24 |
+
if scale:
|
25 |
+
# Rescale the image (get all values between 0 and 1)
|
26 |
+
return img/255.
|
27 |
+
else:
|
28 |
+
return img
|
29 |
+
|
30 |
+
# Note: The following confusion matrix code is a remix of Scikit-Learn's
|
31 |
+
# plot_confusion_matrix function - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html
|
32 |
+
import itertools
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import numpy as np
|
35 |
+
from sklearn.metrics import confusion_matrix
|
36 |
+
|
37 |
+
# Our function needs a different name to sklearn's plot_confusion_matrix
|
38 |
+
def make_confusion_matrix(y_true, y_pred, classes=None, figsize=(10, 10), text_size=15, norm=False, savefig=False):
|
39 |
+
"""Makes a labelled confusion matrix comparing predictions and ground truth labels.
|
40 |
+
|
41 |
+
If classes is passed, confusion matrix will be labelled, if not, integer class values
|
42 |
+
will be used.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
y_true: Array of truth labels (must be same shape as y_pred).
|
46 |
+
y_pred: Array of predicted labels (must be same shape as y_true).
|
47 |
+
classes: Array of class labels (e.g. string form). If `None`, integer labels are used.
|
48 |
+
figsize: Size of output figure (default=(10, 10)).
|
49 |
+
text_size: Size of output figure text (default=15).
|
50 |
+
norm: normalize values or not (default=False).
|
51 |
+
savefig: save confusion matrix to file (default=False).
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
A labelled confusion matrix plot comparing y_true and y_pred.
|
55 |
+
|
56 |
+
Example usage:
|
57 |
+
make_confusion_matrix(y_true=test_labels, # ground truth test labels
|
58 |
+
y_pred=y_preds, # predicted labels
|
59 |
+
classes=class_names, # array of class label names
|
60 |
+
figsize=(15, 15),
|
61 |
+
text_size=10)
|
62 |
+
"""
|
63 |
+
# Create the confustion matrix
|
64 |
+
cm = confusion_matrix(y_true, y_pred)
|
65 |
+
cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] # normalize it
|
66 |
+
n_classes = cm.shape[0] # find the number of classes we're dealing with
|
67 |
+
|
68 |
+
# Plot the figure and make it pretty
|
69 |
+
fig, ax = plt.subplots(figsize=figsize)
|
70 |
+
cax = ax.matshow(cm, cmap=plt.cm.Blues) # colors will represent how 'correct' a class is, darker == better
|
71 |
+
fig.colorbar(cax)
|
72 |
+
|
73 |
+
# Are there a list of classes?
|
74 |
+
if classes:
|
75 |
+
labels = classes
|
76 |
+
else:
|
77 |
+
labels = np.arange(cm.shape[0])
|
78 |
+
|
79 |
+
# Label the axes
|
80 |
+
ax.set(title="Confusion Matrix",
|
81 |
+
xlabel="Predicted label",
|
82 |
+
ylabel="True label",
|
83 |
+
xticks=np.arange(n_classes), # create enough axis slots for each class
|
84 |
+
yticks=np.arange(n_classes),
|
85 |
+
xticklabels=labels, # axes will labeled with class names (if they exist) or ints
|
86 |
+
yticklabels=labels)
|
87 |
+
|
88 |
+
# Make x-axis labels appear on bottom
|
89 |
+
ax.xaxis.set_label_position("bottom")
|
90 |
+
ax.xaxis.tick_bottom()
|
91 |
+
|
92 |
+
# Set the threshold for different colors
|
93 |
+
threshold = (cm.max() + cm.min()) / 2.
|
94 |
+
|
95 |
+
# Plot the text on each cell
|
96 |
+
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
|
97 |
+
if norm:
|
98 |
+
plt.text(j, i, f"{cm[i, j]} ({cm_norm[i, j]*100:.1f}%)",
|
99 |
+
horizontalalignment="center",
|
100 |
+
color="white" if cm[i, j] > threshold else "black",
|
101 |
+
size=text_size)
|
102 |
+
else:
|
103 |
+
plt.text(j, i, f"{cm[i, j]}",
|
104 |
+
horizontalalignment="center",
|
105 |
+
color="white" if cm[i, j] > threshold else "black",
|
106 |
+
size=text_size)
|
107 |
+
|
108 |
+
# Save the figure to the current working directory
|
109 |
+
if savefig:
|
110 |
+
fig.savefig("confusion_matrix.png")
|
111 |
+
|
112 |
+
# Make a function to predict on images and plot them (works with multi-class)
|
113 |
+
def pred_and_plot(model, filename, class_names):
|
114 |
+
"""
|
115 |
+
Imports an image located at filename, makes a prediction on it with
|
116 |
+
a trained model and plots the image with the predicted class as the title.
|
117 |
+
"""
|
118 |
+
# Import the target image and preprocess it
|
119 |
+
img = load_and_prep_image(filename)
|
120 |
+
|
121 |
+
# Make a prediction
|
122 |
+
pred = model.predict(tf.expand_dims(img, axis=0))
|
123 |
+
|
124 |
+
# Get the predicted class
|
125 |
+
if len(pred[0]) > 1: # check for multi-class
|
126 |
+
pred_class = class_names[pred.argmax()] # if more than one output, take the max
|
127 |
+
else:
|
128 |
+
pred_class = class_names[int(tf.round(pred)[0][0])] # if only one output, round
|
129 |
+
|
130 |
+
# Plot the image and predicted class
|
131 |
+
plt.imshow(img)
|
132 |
+
plt.title(f"Prediction: {pred_class}")
|
133 |
+
plt.axis(False);
|
134 |
+
|
135 |
+
import datetime
|
136 |
+
|
137 |
+
def create_tensorboard_callback(dir_name, experiment_name):
|
138 |
+
"""
|
139 |
+
Creates a TensorBoard callback instand to store log files.
|
140 |
+
|
141 |
+
Stores log files with the filepath:
|
142 |
+
"dir_name/experiment_name/current_datetime/"
|
143 |
+
|
144 |
+
Args:
|
145 |
+
dir_name: target directory to store TensorBoard log files
|
146 |
+
experiment_name: name of experiment directory (e.g. efficientnet_model_1)
|
147 |
+
"""
|
148 |
+
log_dir = dir_name + "/" + experiment_name + "/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
149 |
+
tensorboard_callback = tf.keras.callbacks.TensorBoard(
|
150 |
+
log_dir=log_dir
|
151 |
+
)
|
152 |
+
print(f"Saving TensorBoard log files to: {log_dir}")
|
153 |
+
return tensorboard_callback
|
154 |
+
|
155 |
+
# Plot the validation and training data separately
|
156 |
+
import matplotlib.pyplot as plt
|
157 |
+
|
158 |
+
def plot_loss_curves(history):
|
159 |
+
"""
|
160 |
+
Returns separate loss curves for training and validation metrics.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History)
|
164 |
+
"""
|
165 |
+
loss = history.history['loss']
|
166 |
+
val_loss = history.history['val_loss']
|
167 |
+
|
168 |
+
accuracy = history.history['accuracy']
|
169 |
+
val_accuracy = history.history['val_accuracy']
|
170 |
+
|
171 |
+
epochs = range(len(history.history['loss']))
|
172 |
+
|
173 |
+
# Plot loss
|
174 |
+
plt.plot(epochs, loss, label='training_loss')
|
175 |
+
plt.plot(epochs, val_loss, label='val_loss')
|
176 |
+
plt.title('Loss')
|
177 |
+
plt.xlabel('Epochs')
|
178 |
+
plt.legend()
|
179 |
+
|
180 |
+
# Plot accuracy
|
181 |
+
plt.figure()
|
182 |
+
plt.plot(epochs, accuracy, label='training_accuracy')
|
183 |
+
plt.plot(epochs, val_accuracy, label='val_accuracy')
|
184 |
+
plt.title('Accuracy')
|
185 |
+
plt.xlabel('Epochs')
|
186 |
+
plt.legend();
|
187 |
+
|
188 |
+
def compare_historys(original_history, new_history, initial_epochs=5):
|
189 |
+
"""
|
190 |
+
Compares two TensorFlow model History objects.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
original_history: History object from original model (before new_history)
|
194 |
+
new_history: History object from continued model training (after original_history)
|
195 |
+
initial_epochs: Number of epochs in original_history (new_history plot starts from here)
|
196 |
+
"""
|
197 |
+
|
198 |
+
# Get original history measurements
|
199 |
+
acc = original_history.history["accuracy"]
|
200 |
+
loss = original_history.history["loss"]
|
201 |
+
|
202 |
+
val_acc = original_history.history["val_accuracy"]
|
203 |
+
val_loss = original_history.history["val_loss"]
|
204 |
+
|
205 |
+
# Combine original history with new history
|
206 |
+
total_acc = acc + new_history.history["accuracy"]
|
207 |
+
total_loss = loss + new_history.history["loss"]
|
208 |
+
|
209 |
+
total_val_acc = val_acc + new_history.history["val_accuracy"]
|
210 |
+
total_val_loss = val_loss + new_history.history["val_loss"]
|
211 |
+
|
212 |
+
# Make plots
|
213 |
+
plt.figure(figsize=(8, 8))
|
214 |
+
plt.subplot(2, 1, 1)
|
215 |
+
plt.plot(total_acc, label='Training Accuracy')
|
216 |
+
plt.plot(total_val_acc, label='Validation Accuracy')
|
217 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
218 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
219 |
+
plt.legend(loc='lower right')
|
220 |
+
plt.title('Training and Validation Accuracy')
|
221 |
+
|
222 |
+
plt.subplot(2, 1, 2)
|
223 |
+
plt.plot(total_loss, label='Training Loss')
|
224 |
+
plt.plot(total_val_loss, label='Validation Loss')
|
225 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
226 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
227 |
+
plt.legend(loc='upper right')
|
228 |
+
plt.title('Training and Validation Loss')
|
229 |
+
plt.xlabel('epoch')
|
230 |
+
plt.show()
|
231 |
+
|
232 |
+
# Create function to unzip a zipfile into current working directory
|
233 |
+
# (since we're going to be downloading and unzipping a few files)
|
234 |
+
import zipfile
|
235 |
+
|
236 |
+
def unzip_data(filename):
|
237 |
+
"""
|
238 |
+
Unzips filename into the current working directory.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
filename (str): a filepath to a target zip folder to be unzipped.
|
242 |
+
"""
|
243 |
+
zip_ref = zipfile.ZipFile(filename, "r")
|
244 |
+
zip_ref.extractall()
|
245 |
+
zip_ref.close()
|
246 |
+
|
247 |
+
# Walk through an image classification directory and find out how many files (images)
|
248 |
+
# are in each subdirectory.
|
249 |
+
import os
|
250 |
+
|
251 |
+
def walk_through_dir(dir_path):
|
252 |
+
"""
|
253 |
+
Walks through dir_path returning its contents.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
dir_path (str): target directory
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
A print out of:
|
260 |
+
number of subdiretories in dir_path
|
261 |
+
number of images (files) in each subdirectory
|
262 |
+
name of each subdirectory
|
263 |
+
"""
|
264 |
+
for dirpath, dirnames, filenames in os.walk(dir_path):
|
265 |
+
print(f"There are {len(dirnames)} directories and {len(filenames)} images in '{dirpath}'.")
|
266 |
+
|
267 |
+
# Function to evaluate: accuracy, precision, recall, f1-score
|
268 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
269 |
+
|
270 |
+
def calculate_results(y_true, y_pred):
|
271 |
+
"""
|
272 |
+
Calculates model accuracy, precision, recall and f1 score of a binary classification model.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
y_true: true labels in the form of a 1D array
|
276 |
+
y_pred: predicted labels in the form of a 1D array
|
277 |
+
|
278 |
+
Returns a dictionary of accuracy, precision, recall, f1-score.
|
279 |
+
"""
|
280 |
+
# Calculate model accuracy
|
281 |
+
model_accuracy = accuracy_score(y_true, y_pred) * 100
|
282 |
+
# Calculate model precision, recall and f1 score using "weighted average
|
283 |
+
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average="weighted")
|
284 |
+
model_results = {"accuracy": model_accuracy,
|
285 |
+
"precision": model_precision,
|
286 |
+
"recall": model_recall,
|
287 |
+
"f1": model_f1}
|
288 |
+
return model_results
|
model_training.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model_training.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""model_training.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1LgqvdLV1teCsAi6qjR_BBVt4TwX7vx9J
|
8 |
+
|
9 |
+
<a href="https://colab.research.google.com/github/gauravreddy08/food-vision/blob/main/model_training.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
|
10 |
+
|
11 |
+
# **Food Vision** 🍔
|
12 |
+
|
13 |
+
As an introductory project to myself, I built an **end-to-end CNN Image Classification Model** which identifies the food in your image.
|
14 |
+
|
15 |
+
I worked out with a pretrained Image Classification Model that comes with Keras and then retrained it on the infamous **Food101 Dataset**.
|
16 |
+
|
17 |
+
|
18 |
+
**Fun Fact :**
|
19 |
+
|
20 |
+
The Model actually beats the DeepFood Paper's model which also trained on the same dataset.
|
21 |
+
|
22 |
+
The Accuracy of [**DeepFood**](https://arxiv.org/abs/1606.05675) was **77.4%** and our model's is **85%**. Difference of **8%** ain't much but the interesting thing is, DeepFood's model took 2-3 days to train while our's was around 60min.
|
23 |
+
|
24 |
+
> **Dataset :** `Food101`
|
25 |
+
|
26 |
+
> **Model :** `EfficientNetB1`
|
27 |
+
|
28 |
+
## **Setting up the Workspace**
|
29 |
+
|
30 |
+
* Checking the GPU
|
31 |
+
* Mounting Google Drive
|
32 |
+
* Importing Tensorflow
|
33 |
+
* Importing other required Packages
|
34 |
+
|
35 |
+
### **Checking the GPU**
|
36 |
+
|
37 |
+
For this Project we will working with **Mixed Precision**. And mixed precision works best with a with a GPU with compatibility capacity **7.0+**.
|
38 |
+
|
39 |
+
At the time of writing, colab offers the following GPU's :
|
40 |
+
* Nvidia K80
|
41 |
+
* **Nvidia T4**
|
42 |
+
* Nvidia P100
|
43 |
+
|
44 |
+
Colab allocates a random GPU everytime we factory reset runtime. So you can reset the runtime till you get a **Tesla T4 GPU** as T4 GPU has a rating 7.5.
|
45 |
+
|
46 |
+
> In case using local hardware, use a GPU with rating 7.0+ for better results.
|
47 |
+
|
48 |
+
Run the below cell to see which GPU is allocated to you.
|
49 |
+
"""
|
50 |
+
|
51 |
+
!nvidia-smi -L
|
52 |
+
|
53 |
+
"""
|
54 |
+
### **Mounting Google Drive**
|
55 |
+
|
56 |
+
|
57 |
+
"""
|
58 |
+
|
59 |
+
from google.colab import drive
|
60 |
+
drive.mount('/content/drive')
|
61 |
+
|
62 |
+
"""### **Importing Tensorflow**
|
63 |
+
|
64 |
+
At the time of writing, `tesnorflow 2.5.0` has a bug with EfficientNet Models. [Click Here](https://github.com/tensorflow/tensorflow/issues/49725) to get more info about the bug. Hopefully tensorflow fixes it soon.
|
65 |
+
|
66 |
+
So the below code is used to downgrade the version to `tensorflow 2.4.1`, it will take a moment to uninstall the previous version and install our required version.
|
67 |
+
|
68 |
+
> You need to restart the **Runtime** after required version of tensorflow is installed.
|
69 |
+
|
70 |
+
**Note :** Restarting runtime won't assign you a new GPU.
|
71 |
+
"""
|
72 |
+
|
73 |
+
#!pip install tensorflow==2.4.1
|
74 |
+
import tensorflow as tf
|
75 |
+
print(tf.__version__)
|
76 |
+
|
77 |
+
"""### **Importing other required Packages**"""
|
78 |
+
|
79 |
+
import pandas as pd
|
80 |
+
import numpy as np
|
81 |
+
import matplotlib.pyplot as plt
|
82 |
+
import datetime
|
83 |
+
import os
|
84 |
+
import tensorflow_datasets as tfds
|
85 |
+
import seaborn as sn
|
86 |
+
|
87 |
+
"""#### **Importing `helper_fuctions`**
|
88 |
+
|
89 |
+
The `helper_functions.py` is a python script created by me. Which has some important functions I use frequently while building Deep Learning Models.
|
90 |
+
"""
|
91 |
+
|
92 |
+
!wget https://raw.githubusercontent.com/sg-sparsh-goyal/extras/main/helper_function.py
|
93 |
+
|
94 |
+
from helper_function import plot_loss_curves, load_and_prep_image
|
95 |
+
|
96 |
+
"""## **Getting the Data Ready**
|
97 |
+
|
98 |
+
The Dataset used is **Food101**, which is available on both Kaggle and Tensorflow.
|
99 |
+
|
100 |
+
In the below cells we will be importing Datasets from `Tensorflow Datasets` Module.
|
101 |
+
|
102 |
+
"""
|
103 |
+
|
104 |
+
# Prints list of Datasets avaible in Tensorflow Datasets Module
|
105 |
+
|
106 |
+
dataset_list = tfds.list_builders()
|
107 |
+
dataset_list[:10]
|
108 |
+
|
109 |
+
"""### **Importing Food101 Dataset**
|
110 |
+
|
111 |
+
**Disclaimer :**
|
112 |
+
The below cell will take time to run, as it will be downloading
|
113 |
+
**4.65GB data** from **Tensorflow Datasets Module**.
|
114 |
+
|
115 |
+
So do check if you have enough **Disk Space** and **Bandwidth Cap** to run the below cell.
|
116 |
+
"""
|
117 |
+
|
118 |
+
(train_data, test_data), ds_info = tfds.load(name='food101',
|
119 |
+
split=['train', 'validation'],
|
120 |
+
shuffle_files=False,
|
121 |
+
as_supervised=True,
|
122 |
+
with_info=True)
|
123 |
+
|
124 |
+
"""## **Becoming One with the Data**
|
125 |
+
|
126 |
+
One of the most important steps in building any ML or DL Model is to **become one with the data**.
|
127 |
+
|
128 |
+
Once you get the gist of what type of data your dealing with and how it is structured, everything else will fall in place.
|
129 |
+
"""
|
130 |
+
|
131 |
+
ds_info.features
|
132 |
+
|
133 |
+
class_names = ds_info.features['label'].names
|
134 |
+
class_names[:10]
|
135 |
+
|
136 |
+
train_one_sample = train_data.take(1)
|
137 |
+
|
138 |
+
train_one_sample
|
139 |
+
|
140 |
+
for image, label in train_one_sample:
|
141 |
+
print(f"""
|
142 |
+
Image Shape : {image.shape}
|
143 |
+
Image Datatype : {image.dtype}
|
144 |
+
Class : {class_names[label.numpy()]}
|
145 |
+
""")
|
146 |
+
|
147 |
+
image[:2]
|
148 |
+
|
149 |
+
tf.reduce_min(image), tf.reduce_max(image)
|
150 |
+
|
151 |
+
plt.imshow(image)
|
152 |
+
plt.title(class_names[label.numpy()])
|
153 |
+
plt.axis(False);
|
154 |
+
|
155 |
+
"""## **Preprocessing the Data**
|
156 |
+
|
157 |
+
Since we've downloaded the data from TensorFlow Datasets, there are a couple of preprocessing steps we have to take before it's ready to model.
|
158 |
+
|
159 |
+
More specifically, our data is currently:
|
160 |
+
|
161 |
+
* In `uint8` data type
|
162 |
+
* Comprised of all differnet sized tensors (different sized images)
|
163 |
+
* Not scaled (the pixel values are between 0 & 255)
|
164 |
+
|
165 |
+
Whereas, models like data to be:
|
166 |
+
|
167 |
+
* In `float32` data type
|
168 |
+
* Have all of the same size tensors (batches require all tensors have the same shape, e.g. `(224, 224, 3)`)
|
169 |
+
* Scaled (values between 0 & 1), also called normalized
|
170 |
+
|
171 |
+
To take care of these, we'll create a `preprocess_img()` function which:
|
172 |
+
|
173 |
+
* Resizes an input image tensor to a specified size using [`tf.image.resize()`](https://www.tensorflow.org/api_docs/python/tf/image/resize)
|
174 |
+
* Converts an input image tensor's current datatype to `tf.float32` using [`tf.cast()`](https://www.tensorflow.org/api_docs/python/tf/cast)
|
175 |
+
"""
|
176 |
+
|
177 |
+
def preprocess_img(image, label, img_size=224):
|
178 |
+
image = tf.image.resize(image, [img_size, img_size])
|
179 |
+
image = tf.cast(image, tf.float16)
|
180 |
+
return image, label
|
181 |
+
|
182 |
+
# Trying the preprocess function on a single image
|
183 |
+
|
184 |
+
preprocessed_img = preprocess_img(image, label)[0]
|
185 |
+
preprocessed_img
|
186 |
+
|
187 |
+
train_data = train_data.map(preprocess_img, tf.data.AUTOTUNE)
|
188 |
+
train_data = train_data.shuffle(buffer_size=1000).batch(32).prefetch(tf.data.AUTOTUNE)
|
189 |
+
|
190 |
+
test_data = test_data.map(preprocess_img, tf.data.AUTOTUNE)
|
191 |
+
test_data = test_data.batch(32)
|
192 |
+
|
193 |
+
train_data
|
194 |
+
|
195 |
+
test_data
|
196 |
+
|
197 |
+
"""## **Building the Model : EfficientNetB1**
|
198 |
+
|
199 |
+
|
200 |
+
### **Getting the Callbacks ready**
|
201 |
+
As we are dealing with a complex Neural Network (EfficientNetB0) its a good practice to have few call backs set up. Few callbacks I will be using throughtout this Notebook are :
|
202 |
+
* **TensorBoard Callback :** TensorBoard provides the visualization and tooling needed for machine learning experimentation
|
203 |
+
|
204 |
+
* **EarlyStoppingCallback :** Used to stop training when a monitored metric has stopped improving.
|
205 |
+
|
206 |
+
* **ReduceLROnPlateau :** Reduce learning rate when a metric has stopped improving.
|
207 |
+
|
208 |
+
|
209 |
+
We already have **TensorBoardCallBack** function setup in out helper function, all we have to do is get other callbacks ready.
|
210 |
+
"""
|
211 |
+
|
212 |
+
from helper_function import create_tensorboard_callback
|
213 |
+
|
214 |
+
# EarlyStopping Callback
|
215 |
+
|
216 |
+
early_stopping_callback = tf.keras.callbacks.EarlyStopping(restore_best_weights=True, patience=3, verbose=1, monitor="val_accuracy")
|
217 |
+
|
218 |
+
# ReduceLROnPlateau Callback
|
219 |
+
|
220 |
+
lower_lr = tf.keras.callbacks.ReduceLROnPlateau(factor=0.2,
|
221 |
+
monitor='val_accuracy',
|
222 |
+
min_lr=1e-7,
|
223 |
+
patience=0,
|
224 |
+
verbose=1)
|
225 |
+
|
226 |
+
"""
|
227 |
+
|
228 |
+
### **Mixed Precision Training**
|
229 |
+
Mixed precision is used for training neural networks, reducing training time and memory requirements without affecting the model performance.
|
230 |
+
|
231 |
+
More Specifically, in **Mixed Precision** we will setting global dtype as `mixed_float16`. Because modern accelerators can run operations faster in the 16-bit dtypes, as they have specialized hardware to run 16-bit computations and 16-bit dtypes can be read from memory faster.
|
232 |
+
|
233 |
+
To know more about Mixed Precision, [**click here**](https://www.tensorflow.org/guide/mixed_precision)"""
|
234 |
+
|
235 |
+
from tensorflow.keras import mixed_precision
|
236 |
+
mixed_precision.set_global_policy(policy='mixed_float16')
|
237 |
+
|
238 |
+
mixed_precision.global_policy()
|
239 |
+
|
240 |
+
"""
|
241 |
+
|
242 |
+
### **Building the Model**"""
|
243 |
+
|
244 |
+
from tensorflow.keras import layers
|
245 |
+
from tensorflow.keras.layers.experimental import preprocessing
|
246 |
+
|
247 |
+
# Create base model
|
248 |
+
input_shape = (224, 224, 3)
|
249 |
+
base_model = tf.keras.applications.EfficientNetB1(include_top=False)
|
250 |
+
|
251 |
+
# Input and Data Augmentation
|
252 |
+
inputs = layers.Input(shape=input_shape, name="input_layer")
|
253 |
+
x = base_model(inputs)
|
254 |
+
|
255 |
+
x = layers.GlobalAveragePooling2D(name="pooling_layer")(x)
|
256 |
+
x = layers.Dropout(.3)(x)
|
257 |
+
|
258 |
+
x = layers.Dense(len(class_names))(x)
|
259 |
+
outputs = layers.Activation("softmax")(x)
|
260 |
+
model = tf.keras.Model(inputs, outputs)
|
261 |
+
|
262 |
+
# Compiling the model
|
263 |
+
model.compile(loss="sparse_categorical_crossentropy",
|
264 |
+
optimizer=tf.keras.optimizers.Adam(0.001),
|
265 |
+
metrics=["accuracy"])
|
266 |
+
|
267 |
+
model.summary()
|
268 |
+
|
269 |
+
history = model.fit(train_data,
|
270 |
+
epochs=50,
|
271 |
+
steps_per_epoch=len(train_data),
|
272 |
+
validation_data=test_data,
|
273 |
+
validation_steps=int(0.15 * len(test_data)),
|
274 |
+
callbacks=[create_tensorboard_callback("training-logs", "EfficientNetB1-"),
|
275 |
+
early_stopping_callback,
|
276 |
+
lower_lr])
|
277 |
+
|
278 |
+
# Saving the model
|
279 |
+
model.save("/content/drive/My Drive/FinalModel.hdf5")
|
280 |
+
|
281 |
+
# Saving the model
|
282 |
+
model.save("FoodVision.hdf5")
|
283 |
+
|
284 |
+
plot_loss_curves(history)
|
285 |
+
|
286 |
+
model.evaluate(test_data)
|
287 |
+
|
288 |
+
"""## **Evaluating our Model**"""
|
289 |
+
|
290 |
+
# Commented out IPython magic to ensure Python compatibility.
|
291 |
+
# %load_ext tensorboard
|
292 |
+
# %tensorboard --logdir training-logs
|
293 |
+
|
294 |
+
pred_probs = model.predict(test_data, verbose=1)
|
295 |
+
len(pred_probs), pred_probs.shape
|
296 |
+
|
297 |
+
pred_classes = pred_probs.argmax(axis=1)
|
298 |
+
pred_classes[:10], len(pred_classes), pred_classes.shape
|
299 |
+
|
300 |
+
# Getting true labels for the test_data
|
301 |
+
|
302 |
+
y_labels = []
|
303 |
+
test_images = []
|
304 |
+
for images, labels in test_data.unbatch():
|
305 |
+
y_labels.append(labels.numpy())
|
306 |
+
y_labels[:10]
|
307 |
+
|
308 |
+
# Predicted Labels vs. True Labels
|
309 |
+
pred_classes==y_labels
|
310 |
+
|
311 |
+
"""### **Sklearn's Accuracy Score**"""
|
312 |
+
|
313 |
+
from sklearn.metrics import accuracy_score
|
314 |
+
|
315 |
+
sklearn_acc = accuracy_score(y_labels, pred_classes)
|
316 |
+
sklearn_acc
|
317 |
+
|
318 |
+
"""### **Confusion Matrix**
|
319 |
+
A confusion matrix is a table that is often used to describe the performance of a classification model (or "classifier") on a set of test data for which the true values are known
|
320 |
+
"""
|
321 |
+
|
322 |
+
cm = tf.math.confusion_matrix(y_labels, pred_classes)
|
323 |
+
|
324 |
+
plt.figure(figsize = (100, 100));
|
325 |
+
sn.heatmap(cm, annot=True,
|
326 |
+
fmt='',
|
327 |
+
cmap='Purples');
|
328 |
+
|
329 |
+
"""### **Model's Class-wise Accuracy Score**"""
|
330 |
+
|
331 |
+
from sklearn.metrics import classification_report
|
332 |
+
report = (classification_report(y_labels, pred_classes, output_dict=True))
|
333 |
+
|
334 |
+
# Create empty dictionary
|
335 |
+
class_f1_scores = {}
|
336 |
+
# Loop through classification report items
|
337 |
+
for k, v in report.items():
|
338 |
+
if k == "accuracy": # stop once we get to accuracy key
|
339 |
+
break
|
340 |
+
else:
|
341 |
+
# Append class names and f1-scores to new dictionary
|
342 |
+
class_f1_scores[class_names[int(k)]] = v["f1-score"]
|
343 |
+
class_f1_scores
|
344 |
+
|
345 |
+
report_df = pd.DataFrame(class_f1_scores, index = ['f1-scores']).T
|
346 |
+
|
347 |
+
report_df = report_df.sort_values("f1-scores", ascending=True)
|
348 |
+
|
349 |
+
import matplotlib.pyplot as plt
|
350 |
+
|
351 |
+
fig, ax = plt.subplots(figsize=(12, 25))
|
352 |
+
scores = ax.barh(range(len(report_df)), report_df["f1-scores"].values)
|
353 |
+
ax.set_yticks(range(len(report_df)))
|
354 |
+
plt.axvline(x=0.85, linestyle='--', color='r')
|
355 |
+
ax.set_yticklabels(class_names)
|
356 |
+
ax.set_xlabel("f1-score")
|
357 |
+
ax.set_title("F1-Scores for 10 Different Classes")
|
358 |
+
ax.invert_yaxis(); # reverse the order
|
359 |
+
|
360 |
+
"""### **Predicting on our own Custom images**
|
361 |
+
|
362 |
+
Once we have our model ready, its cruicial to evaluate it on our custom data : the data our model has never seen.
|
363 |
+
|
364 |
+
Training and evaluating a model on train and test data is cool, but making predictions on our own realtime images is another level.
|
365 |
+
|
366 |
+
|
367 |
+
"""
|
368 |
+
|
369 |
+
import os
|
370 |
+
|
371 |
+
directory_path = "/content/drive/MyDrive/FoodVisionModels/Custom Images"
|
372 |
+
os.makedirs(directory_path, exist_ok=True)
|
373 |
+
|
374 |
+
custom_food_images = [directory_path + img_path for img_path in os.listdir(directory_path)]
|
375 |
+
custom_food_images
|
376 |
+
|
377 |
+
import os
|
378 |
+
import matplotlib.pyplot as plt
|
379 |
+
|
380 |
+
def pred_plot_custom(folder_path):
|
381 |
+
custom_food_images = [folder_path + img_path for img_path in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, img_path))]
|
382 |
+
|
383 |
+
for img in custom_food_images:
|
384 |
+
img = load_and_prep_image(img, scale=False)
|
385 |
+
pred_prob = model.predict(tf.expand_dims(img, axis=0))
|
386 |
+
pred_class = class_names[pred_prob.argmax()]
|
387 |
+
top_5_i = (pred_prob.argsort())[0][-5:][::-1]
|
388 |
+
values = pred_prob[0][top_5_i]
|
389 |
+
labels = []
|
390 |
+
|
391 |
+
for x in range(5):
|
392 |
+
labels.append(class_names[top_5_i[x]])
|
393 |
+
|
394 |
+
fig, ax = plt.subplots(1, 2, figsize=(15, 5))
|
395 |
+
|
396 |
+
# Plotting Image
|
397 |
+
ax[0].imshow(img/255.)
|
398 |
+
ax[0].set_title(f"Prediction: {pred_class} Probability: {pred_prob.max():.2f}")
|
399 |
+
ax[0].axis('off')
|
400 |
+
|
401 |
+
# Plotting Models Top 5 Predictions
|
402 |
+
ax[1].bar(labels, values, color='orange')
|
403 |
+
ax[1].set_title('Top 5 Predictions')
|
404 |
+
|
405 |
+
plt.show()
|
406 |
+
|
407 |
+
pred_plot_custom("/content/drive/MyDrive/FoodVisionModels/Custom Images/")
|
408 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
alt
|
2 |
+
streamlit
|
3 |
+
pandas
|
4 |
+
tensorflow
|
5 |
+
altair
|
6 |
+
time
|
7 |
+
datetime
|
8 |
+
numpy
|
9 |
+
matplotlib
|
10 |
+
seaborn
|
11 |
+
tensorflow_datasets
|
sample_images/1190_pic_main02.jpg
ADDED
sample_images/1652733217Grilled20Sirloin20Tri20Tip-a61e7e79a54448e2a68252ea222719c7.jpeg
ADDED
sample_images/download.jpeg
ADDED
sample_images/ian-dooley-TLD6iCOlyb0-unsplash.jpg
ADDED
sample_images/istockphoto-945057664-170667a.jpg
ADDED
sample_images/pizza.jpeg
ADDED
sample_images/sushi.jpg
ADDED
Git LFS Details
|
utils.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class_names = ['apple_pie',
|
6 |
+
'baby_back_ribs',
|
7 |
+
'baklava',
|
8 |
+
'beef_carpaccio',
|
9 |
+
'beef_tartare',
|
10 |
+
'beet_salad',
|
11 |
+
'beignets',
|
12 |
+
'bibimbap',
|
13 |
+
'bread_pudding',
|
14 |
+
'breakfast_burrito',
|
15 |
+
'bruschetta',
|
16 |
+
'caesar_salad',
|
17 |
+
'cannoli',
|
18 |
+
'caprese_salad',
|
19 |
+
'carrot_cake',
|
20 |
+
'ceviche',
|
21 |
+
'cheesecake',
|
22 |
+
'cheese_plate',
|
23 |
+
'chicken_curry',
|
24 |
+
'chicken_quesadilla',
|
25 |
+
'chicken_wings',
|
26 |
+
'chocolate_cake',
|
27 |
+
'chocolate_mousse',
|
28 |
+
'churros',
|
29 |
+
'clam_chowder',
|
30 |
+
'club_sandwich',
|
31 |
+
'crab_cakes',
|
32 |
+
'creme_brulee',
|
33 |
+
'croque_madame',
|
34 |
+
'cup_cakes',
|
35 |
+
'deviled_eggs',
|
36 |
+
'donuts',
|
37 |
+
'dumplings',
|
38 |
+
'edamame',
|
39 |
+
'eggs_benedict',
|
40 |
+
'escargots',
|
41 |
+
'falafel',
|
42 |
+
'filet_mignon',
|
43 |
+
'fish_and_chips',
|
44 |
+
'foie_gras',
|
45 |
+
'french_fries',
|
46 |
+
'french_onion_soup',
|
47 |
+
'french_toast',
|
48 |
+
'fried_calamari',
|
49 |
+
'fried_rice',
|
50 |
+
'frozen_yogurt',
|
51 |
+
'garlic_bread',
|
52 |
+
'gnocchi',
|
53 |
+
'greek_salad',
|
54 |
+
'grilled_cheese_sandwich',
|
55 |
+
'grilled_salmon',
|
56 |
+
'guacamole',
|
57 |
+
'gyoza',
|
58 |
+
'hamburger',
|
59 |
+
'hot_and_sour_soup',
|
60 |
+
'hot_dog',
|
61 |
+
'huevos_rancheros',
|
62 |
+
'hummus',
|
63 |
+
'ice_cream',
|
64 |
+
'lasagna',
|
65 |
+
'lobster_bisque',
|
66 |
+
'lobster_roll_sandwich',
|
67 |
+
'macaroni_and_cheese',
|
68 |
+
'macarons',
|
69 |
+
'miso_soup',
|
70 |
+
'mussels',
|
71 |
+
'nachos',
|
72 |
+
'omelette',
|
73 |
+
'onion_rings',
|
74 |
+
'oysters',
|
75 |
+
'pad_thai',
|
76 |
+
'paella',
|
77 |
+
'pancakes',
|
78 |
+
'panna_cotta',
|
79 |
+
'peking_duck',
|
80 |
+
'pho',
|
81 |
+
'pizza',
|
82 |
+
'pork_chop',
|
83 |
+
'poutine',
|
84 |
+
'prime_rib',
|
85 |
+
'pulled_pork_sandwich',
|
86 |
+
'ramen',
|
87 |
+
'ravioli',
|
88 |
+
'red_velvet_cake',
|
89 |
+
'risotto',
|
90 |
+
'samosa',
|
91 |
+
'sashimi',
|
92 |
+
'scallops',
|
93 |
+
'seaweed_salad',
|
94 |
+
'shrimp_and_grits',
|
95 |
+
'spaghetti_bolognese',
|
96 |
+
'spaghetti_carbonara',
|
97 |
+
'spring_rolls',
|
98 |
+
'steak',
|
99 |
+
'strawberry_shortcake',
|
100 |
+
'sushi',
|
101 |
+
'tacos',
|
102 |
+
'takoyaki',
|
103 |
+
'tiramisu',
|
104 |
+
'tuna_tartare',
|
105 |
+
'waffles']
|
106 |
+
|
107 |
+
|
108 |
+
def get_classes():
|
109 |
+
return class_names
|
110 |
+
|
111 |
+
def load_and_prep(image, shape=224, scale=False):
|
112 |
+
image = tf.image.decode_image(image, channels=3)
|
113 |
+
image = tf.image.resize(image, size=([shape, shape]))
|
114 |
+
if scale:
|
115 |
+
image = image/255.
|
116 |
+
return image
|
117 |
+
|
118 |
+
def preprocess_data(data):
|
119 |
+
return np.asarray(data).astype(np.float32)
|