File size: 4,308 Bytes
1178b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
from peft import PeftModel
import transformers
import gradio as gr

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

tokenizer = LlamaTokenizer.from_pretrained("daryl149/llama-2-13b-chat-hf")

BASE_MODEL = "daryl149/llama-2-13b-chat-hf"
LORA_WEIGHTS = "Sparticle/llama-2-13b-chat-japanese-lora"

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )


def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""

if device != "cpu":
    model.half()
model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)


def evaluate(
    instruction,
    input=None,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    **kwargs,
):
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Response:")[1].strip()


g = gr.Interface(
    fn=evaluate,
    inputs=[
        gr.components.Textbox(
            lines=2, label="Instruction", placeholder="Tell me about alpacas."
        ),
        gr.components.Textbox(lines=2, label="Input", placeholder="none"),
        gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
        gr.components.Slider(
            minimum=1, maximum=512, step=1, value=128, label="Max tokens"
        ),
    ],
    outputs=[
        gr.inputs.Textbox(
            lines=5,
            label="Output",
        )
    ],
    title="πŸ¦™πŸŒ² Alpaca-LoRA",
    description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).",
)
g.queue(concurrency_count=1)
g.launch()