Spaces:
Sleeping
Sleeping
Spencer525
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
from sklearn.tree import DecisionTreeClassifier
|
9 |
+
from sklearn.ensemble import RandomForestClassifier
|
10 |
+
from xgboost import XGBClassifier
|
11 |
+
from sklearn.inspection import permutation_importance
|
12 |
+
from sklearn.feature_selection import mutual_info_classif
|
13 |
+
import io
|
14 |
+
import base64
|
15 |
+
|
16 |
+
# Function to create a download link
|
17 |
+
def get_download_link(data, filename, text):
|
18 |
+
b64 = base64.b64encode(data).decode()
|
19 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}">{text}</a>'
|
20 |
+
return href
|
21 |
+
|
22 |
+
# Function to plot correlation matrix
|
23 |
+
def plot_correlation_matrix(data):
|
24 |
+
plt.figure(figsize=(12, 10))
|
25 |
+
sns.heatmap(data.corr(), annot=True, cmap='coolwarm', linewidths=0.5)
|
26 |
+
plt.title('Correlation Matrix')
|
27 |
+
plt.tight_layout()
|
28 |
+
st.pyplot(plt)
|
29 |
+
|
30 |
+
# Function to calculate feature importance
|
31 |
+
def calculate_feature_importance(X, y):
|
32 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
33 |
+
scaler = StandardScaler()
|
34 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
35 |
+
X_test_scaled = scaler.transform(X_test)
|
36 |
+
|
37 |
+
methods = {
|
38 |
+
"Decision Tree": DecisionTreeClassifier(random_state=42),
|
39 |
+
"Random Forest": RandomForestClassifier(n_estimators=100, random_state=42),
|
40 |
+
"XGBoost": XGBClassifier(random_state=42)
|
41 |
+
}
|
42 |
+
|
43 |
+
importance_dict = {}
|
44 |
+
|
45 |
+
for name, model in methods.items():
|
46 |
+
model.fit(X_train_scaled, y_train)
|
47 |
+
importance_dict[name] = model.feature_importances_
|
48 |
+
|
49 |
+
# Permutation Importance
|
50 |
+
rf = RandomForestClassifier(n_estimators=100, random_state=42)
|
51 |
+
rf.fit(X_train_scaled, y_train)
|
52 |
+
perm_importance = permutation_importance(rf, X_test_scaled, y_test, n_repeats=10, random_state=42)
|
53 |
+
importance_dict["Permutation"] = perm_importance.importances_mean
|
54 |
+
|
55 |
+
# Mutual Information
|
56 |
+
mi_scores = mutual_info_classif(X_train_scaled, y_train)
|
57 |
+
importance_dict["Mutual Information"] = mi_scores
|
58 |
+
|
59 |
+
return importance_dict
|
60 |
+
|
61 |
+
# Streamlit app
|
62 |
+
st.title('Heart Disease Feature Analysis')
|
63 |
+
|
64 |
+
# File upload
|
65 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
66 |
+
|
67 |
+
if uploaded_file is not None:
|
68 |
+
data = pd.read_csv(uploaded_file)
|
69 |
+
st.write("Data Preview:")
|
70 |
+
st.write(data.head())
|
71 |
+
|
72 |
+
# Select target variable
|
73 |
+
target_col = st.selectbox("Select the target variable", data.columns)
|
74 |
+
|
75 |
+
if st.button('Analyze'):
|
76 |
+
X = data.drop(target_col, axis=1)
|
77 |
+
y = data[target_col]
|
78 |
+
|
79 |
+
# Correlation Matrix
|
80 |
+
st.subheader('Correlation Matrix')
|
81 |
+
plot_correlation_matrix(data)
|
82 |
+
|
83 |
+
# Download correlation matrix as PNG
|
84 |
+
buf = io.BytesIO()
|
85 |
+
plt.savefig(buf, format='png')
|
86 |
+
buf.seek(0)
|
87 |
+
st.markdown(get_download_link(buf.getvalue(), "correlation_matrix.png", "Download Correlation Matrix as PNG"), unsafe_allow_html=True)
|
88 |
+
|
89 |
+
# Feature Importance
|
90 |
+
st.subheader('Feature Importance')
|
91 |
+
importance_dict = calculate_feature_importance(X, y)
|
92 |
+
|
93 |
+
# Create a DataFrame with all feature importances
|
94 |
+
importance_df = pd.DataFrame(importance_dict, index=X.columns)
|
95 |
+
st.write(importance_df)
|
96 |
+
|
97 |
+
# Download feature importance as XLSX
|
98 |
+
excel_buffer = io.BytesIO()
|
99 |
+
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
|
100 |
+
importance_df.to_excel(writer, sheet_name='Feature Importance')
|
101 |
+
excel_buffer.seek(0)
|
102 |
+
st.markdown(get_download_link(excel_buffer.getvalue(), "feature_importance.xlsx", "Download Feature Importance as XLSX"), unsafe_allow_html=True)
|
103 |
+
|
104 |
+
else:
|
105 |
+
st.write("Please upload a CSV file to begin the analysis.")
|