nou27MM / app.py
Spencer525's picture
Update app.py
309db3a verified
raw
history blame
4.59 kB
import os
import gradio as gr
from langchain_core.prompts import PromptTemplate
from langchain_community.document_loaders import PyPDFLoader
from langchain_google_genai import ChatGoogleGenerativeAI
import google.generativeai as genai
from langchain.chains.question_answering import load_qa_chain
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from PIL import Image
import io
# Configure Gemini API
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
# Load models
model_path_mistral = "nvidia/Mistral-NeMo-Minitron-8B-Base"
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path_mistral)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
mistral_model = AutoModelForCausalLM.from_pretrained(model_path_mistral, torch_dtype=dtype, device_map=device)
openelm_270m_instruct = AutoModelForCausalLM.from_pretrained("apple/OpenELM-1_1B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf")
# 替代的LangSmith評估函數
def evaluate_with_langsmith(text):
score = len(text.split()) # 根據生成文本的字數評分
return f"Score: {score}"
def process_pdf(file_path, question):
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
pdf_loader = PyPDFLoader(file_path)
pages = pdf_loader.load_and_split()
context = "\n".join(str(page.page_content) for page in pages[:200])
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True)
return stuff_answer['output_text']
def process_image(image, question):
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content([image, question])
return response.text
def generate_mistral_followup(answer):
mistral_prompt = f"Based on this answer: {answer}\nGenerate a follow-up question:"
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device)
with torch.no_grad():
mistral_outputs = mistral_model.generate(mistral_inputs, max_length=200)
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True)
return mistral_output
def generate(newQuestion, num):
tokenized_prompt = tokenizer(newQuestion)
tokenized_prompt = torch.tensor(tokenized_prompt['input_ids']).unsqueeze(0)
output_ids = openelm_270m_instruct.generate(tokenized_prompt, max_length=int(num), pad_token_id=0)
output_text = tokenizer.decode(output_ids[0].tolist(), skip_special_tokens=True)
return output_text
def process_input(file, image, question, gen_length):
try:
if file is not None:
gemini_answer = process_pdf(file.name, question)
elif image is not None:
gemini_answer = process_image(image, question)
else:
return "Please upload a PDF file or an image."
mistral_followup = generate_mistral_followup(gemini_answer)
openelm_response = generate(question, gen_length)
langsmith_score = evaluate_with_langsmith(openelm_response)
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_followup}\n\nOpenELM Response: {openelm_response}\n\nLangSmith Score: {langsmith_score}"
return combined_output
except Exception as e:
return f"An error occurred: {str(e)}"
# Define Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Multi-modal RAG Knowledge Retrieval using Gemini API, Mistral, OpenELM, and LangSmith")
with gr.Row():
with gr.Column():
input_file = gr.File(label="Upload PDF File")
input_image = gr.Image(type="pil", label="Upload Image")
input_question = gr.Textbox(label="Ask about the document or image")
input_gen_length = gr.Textbox(label="Number of generated tokens", default="50")
output_text = gr.Textbox(label="Answer - Combined Outputs with LangSmith Evaluation")
submit_button = gr.Button("Submit")
submit_button.click(fn=process_input, inputs=[input_file, input_image, input_question, input_gen_length], outputs=output_text)
demo.launch()