Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,83 +2,75 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import gc
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
def load_model():
|
8 |
-
|
9 |
model_name = "Spestly/Athena-1-1.5B"
|
10 |
|
11 |
-
# Load model with CPU optimizations
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
model_name,
|
14 |
low_cpu_mem_usage=True,
|
15 |
-
torch_dtype=torch.float32,
|
16 |
device_map="cpu"
|
17 |
)
|
18 |
-
|
19 |
-
# Load tokenizer
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
-
|
22 |
-
# Enable memory efficient settings
|
23 |
-
model.eval() # Set to evaluation mode
|
24 |
-
|
25 |
-
return model, tokenizer
|
26 |
-
|
27 |
-
# Global lock for thread safety
|
28 |
-
generation_lock = Lock()
|
29 |
|
30 |
def generate_response(input_text, history):
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
try:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
pad_token_id=tokenizer.pad_token_id,
|
54 |
-
eos_token_id=tokenizer.eos_token_id,
|
55 |
-
use_cache=True,
|
56 |
-
repetition_penalty=1.2,
|
57 |
-
num_beams=1 # Disable beam search for speed
|
58 |
-
)
|
59 |
-
|
60 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
61 |
-
|
62 |
-
# Manual garbage collection
|
63 |
-
gc.collect()
|
64 |
-
|
65 |
-
# Update history
|
66 |
-
history = history + f"\nUser: {input_text}\nAthena: {response}\n"
|
67 |
-
return response, history
|
68 |
|
69 |
except Exception as e:
|
70 |
return f"Error: {str(e)}", history
|
71 |
|
72 |
-
|
73 |
-
print("Loading model...")
|
74 |
-
model, tokenizer = load_model()
|
75 |
-
print("Model loaded successfully!")
|
76 |
|
77 |
-
# Define the Gradio interface
|
78 |
with gr.Blocks() as demo:
|
79 |
gr.Markdown("""
|
80 |
# Athena-1.1.5B Chat
|
81 |
-
|
82 |
""")
|
83 |
|
84 |
# Initialize state and components
|
@@ -128,12 +120,5 @@ with gr.Blocks() as demo:
|
|
128 |
outputs=[output_text, state]
|
129 |
)
|
130 |
|
131 |
-
|
132 |
-
demo.launch(
|
133 |
-
server_name="0.0.0.0",
|
134 |
-
share=False,
|
135 |
-
show_error=True,
|
136 |
-
enable_queue=True,
|
137 |
-
max_threads=2, # Match your vCPU count
|
138 |
-
server_port=7860
|
139 |
-
)
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import gc
|
5 |
+
|
6 |
+
# Global model and tokenizer
|
7 |
+
model = None
|
8 |
+
tokenizer = None
|
9 |
|
10 |
def load_model():
|
11 |
+
global model, tokenizer
|
12 |
model_name = "Spestly/Athena-1-1.5B"
|
13 |
|
|
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
15 |
model_name,
|
16 |
low_cpu_mem_usage=True,
|
17 |
+
torch_dtype=torch.float32,
|
18 |
device_map="cpu"
|
19 |
)
|
|
|
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def generate_response(input_text, history):
|
24 |
+
global model, tokenizer
|
25 |
+
|
26 |
+
# Load model if not loaded
|
27 |
+
if model is None or tokenizer is None:
|
28 |
+
load_model()
|
29 |
+
|
30 |
try:
|
31 |
+
instruction = "You are an AI assistant. Respond to the following instruction clearly and concisely:\n"
|
32 |
+
formatted_input = instruction + input_text
|
33 |
+
|
34 |
+
inputs = tokenizer(
|
35 |
+
formatted_input,
|
36 |
+
return_tensors="pt",
|
37 |
+
truncation=True,
|
38 |
+
max_length=256
|
39 |
+
)
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = model.generate(
|
43 |
+
**inputs,
|
44 |
+
max_new_tokens=100,
|
45 |
+
do_sample=True,
|
46 |
+
top_k=50,
|
47 |
+
top_p=0.9,
|
48 |
+
temperature=0.7,
|
49 |
+
pad_token_id=tokenizer.pad_token_id,
|
50 |
+
eos_token_id=tokenizer.eos_token_id,
|
51 |
+
use_cache=True,
|
52 |
+
repetition_penalty=1.2,
|
53 |
+
num_beams=1
|
54 |
)
|
55 |
+
|
56 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
57 |
+
|
58 |
+
# Manual garbage collection
|
59 |
+
gc.collect()
|
60 |
+
|
61 |
+
# Update history
|
62 |
+
history = history + f"\nUser: {input_text}\nAthena: {response}\n"
|
63 |
+
return response, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
except Exception as e:
|
66 |
return f"Error: {str(e)}", history
|
67 |
|
68 |
+
print("Starting app...")
|
|
|
|
|
|
|
69 |
|
|
|
70 |
with gr.Blocks() as demo:
|
71 |
gr.Markdown("""
|
72 |
# Athena-1.1.5B Chat
|
73 |
+
Smaller and Smarter.
|
74 |
""")
|
75 |
|
76 |
# Initialize state and components
|
|
|
120 |
outputs=[output_text, state]
|
121 |
)
|
122 |
|
123 |
+
if __name__ == "__main__":
|
124 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|