Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,55 +4,161 @@ from huggingface_hub import login
|
|
4 |
import torch
|
5 |
import os
|
6 |
|
|
|
7 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
8 |
login(token=HF_TOKEN)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, low_cpu_mem_usage=True)
|
14 |
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
"Below is an instruction that describes a task. Answer it clearly and concisely.\n\n"
|
23 |
-
f"### Instruction:\n{message}\n\n### Response:"
|
24 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
inputs = tokenizer(instruction, return_tensors="pt")
|
27 |
|
|
|
28 |
with torch.no_grad():
|
29 |
outputs = model.generate(
|
30 |
**inputs,
|
31 |
-
max_new_tokens=
|
32 |
num_return_sequences=1,
|
33 |
-
temperature=
|
34 |
-
top_p=
|
35 |
do_sample=True
|
36 |
)
|
37 |
|
|
|
38 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
response = response.split("### Response:")[-1].strip()
|
40 |
-
|
41 |
return response
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
"
|
54 |
-
|
55 |
-
|
56 |
-
)
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
import os
|
6 |
|
7 |
+
# Hugging Face token login
|
8 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
9 |
login(token=HF_TOKEN)
|
10 |
|
11 |
+
# Define models
|
12 |
+
MODELS = {
|
13 |
+
"atlas-flash-1215": {
|
14 |
+
"name": "π¦ Atlas-Flash 1215",
|
15 |
+
"sizes": {
|
16 |
+
"1.5B": "Spestly/Atlas-Flash-1.5B-Preview",
|
17 |
+
},
|
18 |
+
"emoji": "π¦",
|
19 |
+
"experimental": True,
|
20 |
+
"is_vision": False,
|
21 |
+
"system_prompt_env": "ATLAS_FLASH_1215",
|
22 |
+
},
|
23 |
+
"atlas-pro-0403": {
|
24 |
+
"name": "π Atlas-Pro 0403",
|
25 |
+
"sizes": {
|
26 |
+
"1.5B": "Spestly/Atlas-Pro-1.5B-Preview",
|
27 |
+
},
|
28 |
+
"emoji": "π",
|
29 |
+
"experimental": True,
|
30 |
+
"is_vision": False,
|
31 |
+
"system_prompt_env": "ATLAS_PRO_0403",
|
32 |
+
},
|
33 |
|
34 |
+
}
|
|
|
|
|
35 |
|
36 |
+
# Load default model
|
37 |
+
default_model_key = "atlas-pro-0403"
|
38 |
+
default_size = "1.5B"
|
39 |
+
default_model = MODELS[default_model_key]["sizes"][default_size]
|
40 |
|
41 |
+
def load_model(model_name):
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_name,
|
45 |
+
torch_dtype=torch.float32,
|
46 |
+
low_cpu_mem_usage=True
|
|
|
|
|
47 |
)
|
48 |
+
model.eval()
|
49 |
+
return tokenizer, model
|
50 |
+
|
51 |
+
tokenizer, model = load_model(default_model)
|
52 |
+
|
53 |
+
# Generate response function
|
54 |
+
def generate_response(message, image, history, model_key, model_size, temperature, top_p, max_new_tokens):
|
55 |
+
global tokenizer, model
|
56 |
+
# Load the selected model
|
57 |
+
selected_model = MODELS[model_key]["sizes"][model_size]
|
58 |
+
if selected_model != default_model:
|
59 |
+
tokenizer, model = load_model(selected_model)
|
60 |
|
61 |
+
# Get the system prompt from the environment
|
62 |
+
system_prompt_env = MODELS[model_key]["system_prompt_env"]
|
63 |
+
system_prompt = os.getenv(system_prompt_env, "You are an advanced AI system. Help the user as best as you can.")
|
64 |
+
|
65 |
+
# Construct instruction
|
66 |
+
if MODELS[model_key]["is_vision"]:
|
67 |
+
# If a vision model, include the image information
|
68 |
+
image_info = "An image has been provided as input."
|
69 |
+
instruction = (
|
70 |
+
f"{system_prompt}\n\n"
|
71 |
+
f"### Instruction:\n{message}\n{image_info}\n\n### Response:"
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
# For non-vision models
|
75 |
+
instruction = (
|
76 |
+
f"{system_prompt}\n\n"
|
77 |
+
f"### Instruction:\n{message}\n\n### Response:"
|
78 |
+
)
|
79 |
+
|
80 |
+
# Tokenize input
|
81 |
inputs = tokenizer(instruction, return_tensors="pt")
|
82 |
|
83 |
+
# Generate response
|
84 |
with torch.no_grad():
|
85 |
outputs = model.generate(
|
86 |
**inputs,
|
87 |
+
max_new_tokens=max_new_tokens,
|
88 |
num_return_sequences=1,
|
89 |
+
temperature=temperature,
|
90 |
+
top_p=top_p,
|
91 |
do_sample=True
|
92 |
)
|
93 |
|
94 |
+
# Decode response
|
95 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
96 |
response = response.split("### Response:")[-1].strip()
|
|
|
97 |
return response
|
98 |
|
99 |
+
# User interface
|
100 |
+
def create_interface():
|
101 |
+
# Define input components
|
102 |
+
message_input = gr.Textbox(label="Message", placeholder="Type your message here...")
|
103 |
+
model_key_selector = gr.Dropdown(
|
104 |
+
label="Model",
|
105 |
+
choices=list(MODELS.keys()),
|
106 |
+
value=default_model_key
|
107 |
+
)
|
108 |
+
model_size_selector = gr.Dropdown(
|
109 |
+
label="Model Size",
|
110 |
+
choices=list(MODELS[default_model_key]["sizes"].keys()),
|
111 |
+
value=default_size
|
112 |
+
)
|
113 |
+
temperature_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1)
|
114 |
+
top_p_slider = gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, value=0.9, step=0.1)
|
115 |
+
max_tokens_slider = gr.Slider(label="Max New Tokens", minimum=50, maximum=2000, value=1000, step=50)
|
116 |
+
image_input = gr.Image(label="Upload Image (if applicable)", type="filepath", visible=False)
|
117 |
+
|
118 |
+
# Function to toggle visibility of image input
|
119 |
+
def toggle_image_input(model_key):
|
120 |
+
return MODELS[model_key]["is_vision"]
|
121 |
+
|
122 |
+
# Output components
|
123 |
+
chat_output = gr.Chatbot(label="Chatbot")
|
124 |
+
|
125 |
+
# Function to process inputs and generate output
|
126 |
+
def process_inputs(message, image, model_key, model_size, temperature, top_p, max_new_tokens, history=[]):
|
127 |
+
response = generate_response(
|
128 |
+
message=message,
|
129 |
+
image=image,
|
130 |
+
history=history,
|
131 |
+
model_key=model_key,
|
132 |
+
model_size=model_size,
|
133 |
+
temperature=temperature,
|
134 |
+
top_p=top_p,
|
135 |
+
max_new_tokens=max_new_tokens
|
136 |
+
)
|
137 |
+
history.append((message, response))
|
138 |
+
return history
|
139 |
+
|
140 |
+
# Interface layout
|
141 |
+
iface = gr.Interface(
|
142 |
+
fn=process_inputs,
|
143 |
+
inputs=[
|
144 |
+
message_input,
|
145 |
+
image_input,
|
146 |
+
model_key_selector,
|
147 |
+
model_size_selector,
|
148 |
+
temperature_slider,
|
149 |
+
top_p_slider,
|
150 |
+
max_tokens_slider
|
151 |
+
],
|
152 |
+
outputs=chat_output,
|
153 |
+
title="π Atlas-Pro/Flash/Vision Interface",
|
154 |
+
description="Interact with multiple models like Atlas-Pro, Atlas-Flash, and AtlasV-Pro (Comming Soon!). Upload images for vision models!",
|
155 |
+
theme="soft",
|
156 |
+
live=True
|
157 |
+
)
|
158 |
+
|
159 |
+
# Add event to toggle image input visibility
|
160 |
+
iface.input_components[1].set_visibility(toggle_image_input(model_key_selector.value))
|
161 |
+
return iface
|
162 |
+
|
163 |
+
# Launch the app
|
164 |
+
create_interface().launch()
|