from keras.models import load_model from read_dataset import test_X_path, test_Y, tf_dataset batch_size = 8 test_steps = (len(test_X_path) // batch_size) if len(test_X_path) % batch_size != 0: test_steps += 1 test_ds = tf_dataset(test_X_path, test_Y, batch_size) cnn_model = load_model("files/model_new.h5") cnn_model.evaluate(test_ds, steps=test_steps)