File size: 4,688 Bytes
a030099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from __future__ import annotations

import pathlib
import tarfile

import gradio as gr

from model import AppModel

DESCRIPTION = '''# ViTPose
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).
Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose)
'''


def set_example_video(example: list) -> dict:
    return gr.Video.update(value=example[0])


def extract_tar() -> None:
    if pathlib.Path('mmdet_configs/configs').exists():
        return
    with tarfile.open('mmdet_configs/configs.tar') as f:
        f.extractall('mmdet_configs')


extract_tar()

model = AppModel()

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Row():
        with gr.Column():
            input_video = gr.Video(label='Input Video',
                                   format='mp4',
                                   elem_id='input_video')
            detector_name = gr.Dropdown(list(
                model.det_model.MODEL_DICT.keys()),
                                        value=model.det_model.model_name,
                                        label='Detector')
            pose_model_name = gr.Dropdown(list(
                model.pose_model.MODEL_DICT.keys()),
                                          value=model.pose_model.model_name,
                                          label='Pose Model')
            det_score_threshold = gr.Slider(0,
                                            1,
                                            step=0.05,
                                            value=0.5,
                                            label='Box Score Threshold')
            max_num_frames = gr.Slider(1,
                                       300,
                                       step=1,
                                       value=60,
                                       label='Maximum Number of Frames')
            predict_button = gr.Button(value='Predict')
            pose_preds = gr.Variable()

            paths = sorted(pathlib.Path('videos').rglob('*.mp4'))
            example_videos = gr.Dataset(components=[input_video],
                                        samples=[[path.as_posix()]
                                                 for path in paths])

        with gr.Column():
            result = gr.Video(label='Result', format='mp4', elem_id='result')
            vis_kpt_score_threshold = gr.Slider(
                0,
                1,
                step=0.05,
                value=0.3,
                label='Visualization Score Threshold')
            vis_dot_radius = gr.Slider(1,
                                       10,
                                       step=1,
                                       value=4,
                                       label='Dot Radius')
            vis_line_thickness = gr.Slider(1,
                                           10,
                                           step=1,
                                           value=2,
                                           label='Line Thickness')
            redraw_button = gr.Button(value='Redraw')

    detector_name.change(fn=model.det_model.set_model,
                         inputs=detector_name,
                         outputs=None)
    pose_model_name.change(fn=model.pose_model.set_model,
                           inputs=pose_model_name,
                           outputs=None)
    predict_button.click(fn=model.run,
                         inputs=[
                             input_video,
                             detector_name,
                             pose_model_name,
                             det_score_threshold,
                             max_num_frames,
                             vis_kpt_score_threshold,
                             vis_dot_radius,
                             vis_line_thickness,
                         ],
                         outputs=[
                             result,
                             pose_preds,
                         ])
    redraw_button.click(fn=model.visualize_pose_results,
                        inputs=[
                            input_video,
                            pose_preds,
                            vis_kpt_score_threshold,
                            vis_dot_radius,
                            vis_line_thickness,
                        ],
                        outputs=result)

    example_videos.click(fn=set_example_video,
                         inputs=example_videos,
                         outputs=input_video)

demo.queue().launch(show_api=False)