File size: 7,202 Bytes
4dab15f
fededd1
4dab15f
 
 
 
fededd1
4dab15f
 
 
 
 
fededd1
4dab15f
 
 
fededd1
 
4dab15f
fededd1
 
 
4dab15f
 
 
 
 
 
 
 
 
 
fededd1
 
4dab15f
 
fededd1
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
4dab15f
 
 
 
 
 
 
fededd1
 
 
 
 
4dab15f
 
 
 
 
 
 
 
fededd1
4dab15f
fededd1
 
 
 
4dab15f
 
 
 
 
 
 
fededd1
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
 
 
 
 
 
 
 
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import sys

sys.path.append(os.getcwd())

import argparse
import time
from importlib.resources import files

import torch
import torchaudio
from accelerate import Accelerator
from tqdm import tqdm

from f5_tts.eval.utils_eval import (
    get_inference_prompt,
    get_librispeech_test_clean_metainfo,
    get_seedtts_testset_metainfo,
)
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
from f5_tts.model import CFM, DiT, UNetT
from f5_tts.model.utils import get_tokenizer

accelerator = Accelerator()
device = f"cuda:{accelerator.process_index}"


# --------------------- Dataset Settings -------------------- #

target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
win_length = 1024
n_fft = 1024
target_rms = 0.1


tokenizer = "pinyin"
rel_path = str(files("f5_tts").joinpath("../../"))


def main():
    # ---------------------- infer setting ---------------------- #

    parser = argparse.ArgumentParser(description="batch inference")

    parser.add_argument("-s", "--seed", default=None, type=int)
    parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
    parser.add_argument("-n", "--expname", required=True)
    parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
    parser.add_argument("-m", "--mel_spec_type", default="vocos", type=str, choices=["bigvgan", "vocos"])

    parser.add_argument("-nfe", "--nfestep", default=32, type=int)
    parser.add_argument("-o", "--odemethod", default="euler")
    parser.add_argument("-ss", "--swaysampling", default=-1, type=float)

    parser.add_argument("-t", "--testset", required=True)

    args = parser.parse_args()

    seed = args.seed
    dataset_name = args.dataset
    exp_name = args.expname
    ckpt_step = args.ckptstep
    ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
    mel_spec_type = args.mel_spec_type

    nfe_step = args.nfestep
    ode_method = args.odemethod
    sway_sampling_coef = args.swaysampling

    testset = args.testset

    infer_batch_size = 1  # max frames. 1 for ddp single inference (recommended)
    cfg_strength = 2.0
    speed = 1.0
    use_truth_duration = False
    no_ref_audio = False

    if exp_name == "F5TTS_Base":
        model_cls = DiT
        model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)

    elif exp_name == "E2TTS_Base":
        model_cls = UNetT
        model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)

    if testset == "ls_pc_test_clean":
        metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
        librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean"  # test-clean path
        metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)

    elif testset == "seedtts_test_zh":
        metalst = rel_path + "/data/seedtts_testset/zh/meta.lst"
        metainfo = get_seedtts_testset_metainfo(metalst)

    elif testset == "seedtts_test_en":
        metalst = rel_path + "/data/seedtts_testset/en/meta.lst"
        metainfo = get_seedtts_testset_metainfo(metalst)

    # path to save genereted wavs
    output_dir = (
        f"{rel_path}/"
        f"results/{exp_name}_{ckpt_step}/{testset}/"
        f"seed{seed}_{ode_method}_nfe{nfe_step}_{mel_spec_type}"
        f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
        f"_cfg{cfg_strength}_speed{speed}"
        f"{'_gt-dur' if use_truth_duration else ''}"
        f"{'_no-ref-audio' if no_ref_audio else ''}"
    )

    # -------------------------------------------------#

    use_ema = True

    prompts_all = get_inference_prompt(
        metainfo,
        speed=speed,
        tokenizer=tokenizer,
        target_sample_rate=target_sample_rate,
        n_mel_channels=n_mel_channels,
        hop_length=hop_length,
        mel_spec_type=mel_spec_type,
        target_rms=target_rms,
        use_truth_duration=use_truth_duration,
        infer_batch_size=infer_batch_size,
    )

    # Vocoder model
    local = False
    if mel_spec_type == "vocos":
        vocoder_local_path = "../checkpoints/charactr/vocos-mel-24khz"
    elif mel_spec_type == "bigvgan":
        vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
    vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=local, local_path=vocoder_local_path)

    # Tokenizer
    vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)

    # Model
    model = CFM(
        transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
        mel_spec_kwargs=dict(
            n_fft=n_fft,
            hop_length=hop_length,
            win_length=win_length,
            n_mel_channels=n_mel_channels,
            target_sample_rate=target_sample_rate,
            mel_spec_type=mel_spec_type,
        ),
        odeint_kwargs=dict(
            method=ode_method,
        ),
        vocab_char_map=vocab_char_map,
    ).to(device)

    dtype = torch.float32 if mel_spec_type == "bigvgan" else None
    model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)

    if not os.path.exists(output_dir) and accelerator.is_main_process:
        os.makedirs(output_dir)

    # start batch inference
    accelerator.wait_for_everyone()
    start = time.time()

    with accelerator.split_between_processes(prompts_all) as prompts:
        for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
            utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
            ref_mels = ref_mels.to(device)
            ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
            total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)

            # Inference
            with torch.inference_mode():
                generated, _ = model.sample(
                    cond=ref_mels,
                    text=final_text_list,
                    duration=total_mel_lens,
                    lens=ref_mel_lens,
                    steps=nfe_step,
                    cfg_strength=cfg_strength,
                    sway_sampling_coef=sway_sampling_coef,
                    no_ref_audio=no_ref_audio,
                    seed=seed,
                )
                # Final result
                for i, gen in enumerate(generated):
                    gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
                    gen_mel_spec = gen.permute(0, 2, 1)
                    if mel_spec_type == "vocos":
                        generated_wave = vocoder.decode(gen_mel_spec)
                    elif mel_spec_type == "bigvgan":
                        generated_wave = vocoder(gen_mel_spec)

                    if ref_rms_list[i] < target_rms:
                        generated_wave = generated_wave * ref_rms_list[i] / target_rms
                    torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave.squeeze(0).cpu(), target_sample_rate)

    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        timediff = time.time() - start
        print(f"Done batch inference in {timediff / 60 :.2f} minutes.")


if __name__ == "__main__":
    main()