File size: 7,572 Bytes
4dab15f
 
 
 
 
fededd1
4dab15f
 
 
 
 
 
 
fededd1
4dab15f
fededd1
4dab15f
 
 
fededd1
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
4dab15f
 
 
 
 
3f5b3b4
 
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f5b3b4
4dab15f
 
fededd1
 
 
 
 
4dab15f
fededd1
4dab15f
 
 
 
 
 
 
fededd1
 
 
 
 
 
 
 
 
 
 
4dab15f
 
 
 
 
 
 
 
 
 
fededd1
 
 
 
 
 
4dab15f
 
fededd1
4dab15f
 
fededd1
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0bca14
 
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
b6584c2
fededd1
b6584c2
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fededd1
4dab15f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import codecs
import os
import re
from importlib.resources import files
from pathlib import Path

import numpy as np
import soundfile as sf
import tomli
from cached_path import cached_path

from f5_tts.infer.utils_infer import (
    infer_process,
    load_model,
    load_vocoder,
    preprocess_ref_audio_text,
    remove_silence_for_generated_wav,
)
from f5_tts.model import DiT, UNetT

parser = argparse.ArgumentParser(
    prog="python3 infer-cli.py",
    description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
    epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
    "-c",
    "--config",
    help="Configuration file. Default=infer/examples/basic/basic.toml",
    default=os.path.join(files("f5_tts").joinpath("infer/examples/basic"), "basic.toml"),
)
parser.add_argument(
    "-m",
    "--model",
    help="F5-TTS | E2-TTS",
)
parser.add_argument(
    "-p",
    "--ckpt_file",
    help="The Checkpoint .pt",
)
parser.add_argument(
    "-v",
    "--vocab_file",
    help="The vocab .txt",
)
parser.add_argument("-r", "--ref_audio", type=str, help="Reference audio file < 15 seconds.")
parser.add_argument("-s", "--ref_text", type=str, default="666", help="Subtitle for the reference audio.")
parser.add_argument(
    "-t",
    "--gen_text",
    type=str,
    help="Text to generate.",
)
parser.add_argument(
    "-f",
    "--gen_file",
    type=str,
    help="File with text to generate. Ignores --text",
)
parser.add_argument(
    "-o",
    "--output_dir",
    type=str,
    help="Path to output folder..",
)
parser.add_argument(
    "--remove_silence",
    help="Remove silence.",
)
parser.add_argument("--vocoder_name", type=str, default="vocos", choices=["vocos", "bigvgan"], help="vocoder name")
parser.add_argument(
    "--load_vocoder_from_local",
    action="store_true",
    help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
)
parser.add_argument(
    "--speed",
    type=float,
    default=1.0,
    help="Adjust the speed of the audio generation (default: 1.0)",
)
args = parser.parse_args()

config = tomli.load(open(args.config, "rb"))

ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
gen_text = args.gen_text if args.gen_text else config["gen_text"]
gen_file = args.gen_file if args.gen_file else config["gen_file"]

# patches for pip pkg user
if "infer/examples/" in ref_audio:
    ref_audio = str(files("f5_tts").joinpath(f"{ref_audio}"))
if "infer/examples/" in gen_file:
    gen_file = str(files("f5_tts").joinpath(f"{gen_file}"))
if "voices" in config:
    for voice in config["voices"]:
        voice_ref_audio = config["voices"][voice]["ref_audio"]
        if "infer/examples/" in voice_ref_audio:
            config["voices"][voice]["ref_audio"] = str(files("f5_tts").joinpath(f"{voice_ref_audio}"))

if gen_file:
    gen_text = codecs.open(gen_file, "r", "utf-8").read()
output_dir = args.output_dir if args.output_dir else config["output_dir"]
model = args.model if args.model else config["model"]
ckpt_file = args.ckpt_file if args.ckpt_file else ""
vocab_file = args.vocab_file if args.vocab_file else ""
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
speed = args.speed
wave_path = Path(output_dir) / "infer_cli_out.wav"
# spectrogram_path = Path(output_dir) / "infer_cli_out.png"
if args.vocoder_name == "vocos":
    vocoder_local_path = "../checkpoints/vocos-mel-24khz"
elif args.vocoder_name == "bigvgan":
    vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
mel_spec_type = args.vocoder_name

vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=args.load_vocoder_from_local, local_path=vocoder_local_path)


# load models
if model == "F5-TTS":
    model_cls = DiT
    model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
    if ckpt_file == "":
        if args.vocoder_name == "vocos":
            repo_name = "F5-TTS"
            exp_name = "F5TTS_Base"
            ckpt_step = 1200000
            ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
            # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt"  # .pt | .safetensors; local path
        elif args.vocoder_name == "bigvgan":
            repo_name = "F5-TTS"
            exp_name = "F5TTS_Base_bigvgan"
            ckpt_step = 1250000
            ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))

elif model == "E2-TTS":
    model_cls = UNetT
    model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
    if ckpt_file == "":
        repo_name = "E2-TTS"
        exp_name = "E2TTS_Base"
        ckpt_step = 1200000
        ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
        # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt"  # .pt | .safetensors; local path
    elif args.vocoder_name == "bigvgan":  # TODO: need to test
        repo_name = "F5-TTS"
        exp_name = "F5TTS_Base_bigvgan"
        ckpt_step = 1250000
        ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))


print(f"Using {model}...")
ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=args.vocoder_name, vocab_file=vocab_file)


def main_process(ref_audio, ref_text, text_gen, model_obj, mel_spec_type, remove_silence, speed):
    main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
    if "voices" not in config:
        voices = {"main": main_voice}
    else:
        voices = config["voices"]
        voices["main"] = main_voice
    for voice in voices:
        voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
            voices[voice]["ref_audio"], voices[voice]["ref_text"]
        )
        print("Voice:", voice)
        print("Ref_audio:", voices[voice]["ref_audio"])
        print("Ref_text:", voices[voice]["ref_text"])

    generated_audio_segments = []
    reg1 = r"(?=\[\w+\])"
    chunks = re.split(reg1, text_gen)
    reg2 = r"\[(\w+)\]"
    for text in chunks:
        if not text.strip():
            continue
        match = re.match(reg2, text)
        if match:
            voice = match[1]
        else:
            print("No voice tag found, using main.")
            voice = "main"
        if voice not in voices:
            print(f"Voice {voice} not found, using main.")
            voice = "main"
        text = re.sub(reg2, "", text)
        gen_text = text.strip()
        ref_audio = voices[voice]["ref_audio"]
        ref_text = voices[voice]["ref_text"]
        print(f"Voice: {voice}")
        audio, final_sample_rate, spectragram = infer_process(
            ref_audio, ref_text, gen_text, model_obj, vocoder, mel_spec_type=mel_spec_type, speed=speed
        )
        generated_audio_segments.append(audio)

    if generated_audio_segments:
        final_wave = np.concatenate(generated_audio_segments)

        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        with open(wave_path, "wb") as f:
            sf.write(f.name, final_wave, final_sample_rate)
            # Remove silence
            if remove_silence:
                remove_silence_for_generated_wav(f.name)
            print(f.name)


def main():
    main_process(ref_audio, ref_text, gen_text, ema_model, mel_spec_type, remove_silence, speed)


if __name__ == "__main__":
    main()