Spaces:
Running
Running
# Evaluate with Librispeech test-clean, ~3s prompt to generate 4-10s audio (the way of valle/voicebox evaluation) | |
import sys | |
import os | |
sys.path.append(os.getcwd()) | |
import multiprocessing as mp | |
from importlib.resources import files | |
import numpy as np | |
from f5_tts.eval.utils_eval import ( | |
get_librispeech_test, | |
run_asr_wer, | |
run_sim, | |
) | |
rel_path = str(files("f5_tts").joinpath("../../")) | |
eval_task = "wer" # sim | wer | |
lang = "en" | |
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst" | |
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path | |
gen_wav_dir = "PATH_TO_GENERATED" # generated wavs | |
gpus = [0, 1, 2, 3, 4, 5, 6, 7] | |
test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path) | |
## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book, | |
## leading to a low similarity for the ground truth in some cases. | |
# test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth | |
local = False | |
if local: # use local custom checkpoint dir | |
asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3" | |
else: | |
asr_ckpt_dir = "" # auto download to cache dir | |
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth" | |
# --------------------------- WER --------------------------- | |
if eval_task == "wer": | |
wers = [] | |
with mp.Pool(processes=len(gpus)) as pool: | |
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set] | |
results = pool.map(run_asr_wer, args) | |
for wers_ in results: | |
wers.extend(wers_) | |
wer = round(np.mean(wers) * 100, 3) | |
print(f"\nTotal {len(wers)} samples") | |
print(f"WER : {wer}%") | |
# --------------------------- SIM --------------------------- | |
if eval_task == "sim": | |
sim_list = [] | |
with mp.Pool(processes=len(gpus)) as pool: | |
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set] | |
results = pool.map(run_sim, args) | |
for sim_ in results: | |
sim_list.extend(sim_) | |
sim = round(sum(sim_list) / len(sim_list), 3) | |
print(f"\nTotal {len(sim_list)} samples") | |
print(f"SIM : {sim}") | |