Spaces:
Running
Running
# Emilia Dataset: https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07 | |
# if use updated new version, i.e. WebDataset, feel free to modify / draft your own script | |
# generate audio text map for Emilia ZH & EN | |
# evaluate for vocab size | |
import os | |
import sys | |
sys.path.append(os.getcwd()) | |
import json | |
from concurrent.futures import ProcessPoolExecutor | |
from importlib.resources import files | |
from pathlib import Path | |
from tqdm import tqdm | |
from datasets.arrow_writer import ArrowWriter | |
from f5_tts.model.utils import ( | |
repetition_found, | |
convert_char_to_pinyin, | |
) | |
out_zh = { | |
"ZH_B00041_S06226", | |
"ZH_B00042_S09204", | |
"ZH_B00065_S09430", | |
"ZH_B00065_S09431", | |
"ZH_B00066_S09327", | |
"ZH_B00066_S09328", | |
} | |
zh_filters = ["い", "て"] | |
# seems synthesized audios, or heavily code-switched | |
out_en = { | |
"EN_B00013_S00913", | |
"EN_B00042_S00120", | |
"EN_B00055_S04111", | |
"EN_B00061_S00693", | |
"EN_B00061_S01494", | |
"EN_B00061_S03375", | |
"EN_B00059_S00092", | |
"EN_B00111_S04300", | |
"EN_B00100_S03759", | |
"EN_B00087_S03811", | |
"EN_B00059_S00950", | |
"EN_B00089_S00946", | |
"EN_B00078_S05127", | |
"EN_B00070_S04089", | |
"EN_B00074_S09659", | |
"EN_B00061_S06983", | |
"EN_B00061_S07060", | |
"EN_B00059_S08397", | |
"EN_B00082_S06192", | |
"EN_B00091_S01238", | |
"EN_B00089_S07349", | |
"EN_B00070_S04343", | |
"EN_B00061_S02400", | |
"EN_B00076_S01262", | |
"EN_B00068_S06467", | |
"EN_B00076_S02943", | |
"EN_B00064_S05954", | |
"EN_B00061_S05386", | |
"EN_B00066_S06544", | |
"EN_B00076_S06944", | |
"EN_B00072_S08620", | |
"EN_B00076_S07135", | |
"EN_B00076_S09127", | |
"EN_B00065_S00497", | |
"EN_B00059_S06227", | |
"EN_B00063_S02859", | |
"EN_B00075_S01547", | |
"EN_B00061_S08286", | |
"EN_B00079_S02901", | |
"EN_B00092_S03643", | |
"EN_B00096_S08653", | |
"EN_B00063_S04297", | |
"EN_B00063_S04614", | |
"EN_B00079_S04698", | |
"EN_B00104_S01666", | |
"EN_B00061_S09504", | |
"EN_B00061_S09694", | |
"EN_B00065_S05444", | |
"EN_B00063_S06860", | |
"EN_B00065_S05725", | |
"EN_B00069_S07628", | |
"EN_B00083_S03875", | |
"EN_B00071_S07665", | |
"EN_B00071_S07665", | |
"EN_B00062_S04187", | |
"EN_B00065_S09873", | |
"EN_B00065_S09922", | |
"EN_B00084_S02463", | |
"EN_B00067_S05066", | |
"EN_B00106_S08060", | |
"EN_B00073_S06399", | |
"EN_B00073_S09236", | |
"EN_B00087_S00432", | |
"EN_B00085_S05618", | |
"EN_B00064_S01262", | |
"EN_B00072_S01739", | |
"EN_B00059_S03913", | |
"EN_B00069_S04036", | |
"EN_B00067_S05623", | |
"EN_B00060_S05389", | |
"EN_B00060_S07290", | |
"EN_B00062_S08995", | |
} | |
en_filters = ["ا", "い", "て"] | |
def deal_with_audio_dir(audio_dir): | |
audio_jsonl = audio_dir.with_suffix(".jsonl") | |
sub_result, durations = [], [] | |
vocab_set = set() | |
bad_case_zh = 0 | |
bad_case_en = 0 | |
with open(audio_jsonl, "r") as f: | |
lines = f.readlines() | |
for line in tqdm(lines, desc=f"{audio_jsonl.stem}"): | |
obj = json.loads(line) | |
text = obj["text"] | |
if obj["language"] == "zh": | |
if obj["wav"].split("/")[1] in out_zh or any(f in text for f in zh_filters) or repetition_found(text): | |
bad_case_zh += 1 | |
continue | |
else: | |
text = text.translate( | |
str.maketrans({",": ",", "!": "!", "?": "?"}) | |
) # not "。" cuz much code-switched | |
if obj["language"] == "en": | |
if ( | |
obj["wav"].split("/")[1] in out_en | |
or any(f in text for f in en_filters) | |
or repetition_found(text, length=4) | |
): | |
bad_case_en += 1 | |
continue | |
if tokenizer == "pinyin": | |
text = convert_char_to_pinyin([text], polyphone=polyphone)[0] | |
duration = obj["duration"] | |
sub_result.append({"audio_path": str(audio_dir.parent / obj["wav"]), "text": text, "duration": duration}) | |
durations.append(duration) | |
vocab_set.update(list(text)) | |
return sub_result, durations, vocab_set, bad_case_zh, bad_case_en | |
def main(): | |
assert tokenizer in ["pinyin", "char"] | |
result = [] | |
duration_list = [] | |
text_vocab_set = set() | |
total_bad_case_zh = 0 | |
total_bad_case_en = 0 | |
# process raw data | |
executor = ProcessPoolExecutor(max_workers=max_workers) | |
futures = [] | |
for lang in langs: | |
dataset_path = Path(os.path.join(dataset_dir, lang)) | |
[ | |
futures.append(executor.submit(deal_with_audio_dir, audio_dir)) | |
for audio_dir in dataset_path.iterdir() | |
if audio_dir.is_dir() | |
] | |
for futures in tqdm(futures, total=len(futures)): | |
sub_result, durations, vocab_set, bad_case_zh, bad_case_en = futures.result() | |
result.extend(sub_result) | |
duration_list.extend(durations) | |
text_vocab_set.update(vocab_set) | |
total_bad_case_zh += bad_case_zh | |
total_bad_case_en += bad_case_en | |
executor.shutdown() | |
# save preprocessed dataset to disk | |
if not os.path.exists(f"{save_dir}"): | |
os.makedirs(f"{save_dir}") | |
print(f"\nSaving to {save_dir} ...") | |
# dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list}) # oom | |
# dataset.save_to_disk(f"{save_dir}/raw", max_shard_size="2GB") | |
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer: | |
for line in tqdm(result, desc="Writing to raw.arrow ..."): | |
writer.write(line) | |
# dup a json separately saving duration in case for DynamicBatchSampler ease | |
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f: | |
json.dump({"duration": duration_list}, f, ensure_ascii=False) | |
# vocab map, i.e. tokenizer | |
# add alphabets and symbols (optional, if plan to ft on de/fr etc.) | |
# if tokenizer == "pinyin": | |
# text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)]) | |
with open(f"{save_dir}/vocab.txt", "w") as f: | |
for vocab in sorted(text_vocab_set): | |
f.write(vocab + "\n") | |
print(f"\nFor {dataset_name}, sample count: {len(result)}") | |
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") | |
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours") | |
if "ZH" in langs: | |
print(f"Bad zh transcription case: {total_bad_case_zh}") | |
if "EN" in langs: | |
print(f"Bad en transcription case: {total_bad_case_en}\n") | |
if __name__ == "__main__": | |
max_workers = 32 | |
tokenizer = "pinyin" # "pinyin" | "char" | |
polyphone = True | |
langs = ["ZH", "EN"] | |
dataset_dir = "<SOME_PATH>/Emilia_Dataset/raw" | |
dataset_name = f"Emilia_{'_'.join(langs)}_{tokenizer}" | |
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}" | |
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n") | |
main() | |
# Emilia ZH & EN | |
# samples count 37837916 (after removal) | |
# pinyin vocab size 2543 (polyphone) | |
# total duration 95281.87 (hours) | |
# bad zh asr cnt 230435 (samples) | |
# bad eh asr cnt 37217 (samples) | |
# vocab size may be slightly different due to jieba tokenizer and pypinyin (e.g. way of polyphoneme) | |
# please be careful if using pretrained model, make sure the vocab.txt is same | |