Spaces:
Running
Running
# training script. | |
from importlib.resources import files | |
from f5_tts.model import CFM, DiT, Trainer, UNetT | |
from f5_tts.model.dataset import load_dataset | |
from f5_tts.model.utils import get_tokenizer | |
# -------------------------- Dataset Settings --------------------------- # | |
target_sample_rate = 24000 | |
n_mel_channels = 100 | |
hop_length = 256 | |
win_length = 1024 | |
n_fft = 1024 | |
mel_spec_type = "vocos" # 'vocos' or 'bigvgan' | |
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom' | |
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) | |
dataset_name = "Emilia_ZH_EN" | |
# -------------------------- Training Settings -------------------------- # | |
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base | |
learning_rate = 7.5e-5 | |
batch_size_per_gpu = 38400 # 8 GPUs, 8 * 38400 = 307200 | |
batch_size_type = "frame" # "frame" or "sample" | |
max_samples = 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models | |
grad_accumulation_steps = 1 # note: updates = steps / grad_accumulation_steps | |
max_grad_norm = 1.0 | |
epochs = 11 # use linear decay, thus epochs control the slope | |
num_warmup_updates = 20000 # warmup steps | |
save_per_updates = 50000 # save checkpoint per steps | |
last_per_steps = 5000 # save last checkpoint per steps | |
# model params | |
if exp_name == "F5TTS_Base": | |
wandb_resume_id = None | |
model_cls = DiT | |
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) | |
elif exp_name == "E2TTS_Base": | |
wandb_resume_id = None | |
model_cls = UNetT | |
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) | |
# ----------------------------------------------------------------------- # | |
def main(): | |
if tokenizer == "custom": | |
tokenizer_path = tokenizer_path | |
else: | |
tokenizer_path = dataset_name | |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) | |
mel_spec_kwargs = dict( | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
n_mel_channels=n_mel_channels, | |
target_sample_rate=target_sample_rate, | |
mel_spec_type=mel_spec_type, | |
) | |
model = CFM( | |
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), | |
mel_spec_kwargs=mel_spec_kwargs, | |
vocab_char_map=vocab_char_map, | |
) | |
trainer = Trainer( | |
model, | |
epochs, | |
learning_rate, | |
num_warmup_updates=num_warmup_updates, | |
save_per_updates=save_per_updates, | |
checkpoint_path=str(files("f5_tts").joinpath(f"../../ckpts/{exp_name}")), | |
batch_size=batch_size_per_gpu, | |
batch_size_type=batch_size_type, | |
max_samples=max_samples, | |
grad_accumulation_steps=grad_accumulation_steps, | |
max_grad_norm=max_grad_norm, | |
wandb_project="CFM-TTS", | |
wandb_run_name=exp_name, | |
wandb_resume_id=wandb_resume_id, | |
last_per_steps=last_per_steps, | |
log_samples=True, | |
mel_spec_type=mel_spec_type, | |
) | |
train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) | |
trainer.train( | |
train_dataset, | |
resumable_with_seed=666, # seed for shuffling dataset | |
) | |
if __name__ == "__main__": | |
main() | |