# A unified script for inference process # Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format import os import sys sys.path.append(f"../../{os.path.dirname(os.path.abspath(__file__))}/third_party/BigVGAN/") import hashlib import re import tempfile from importlib.resources import files import matplotlib matplotlib.use("Agg") import matplotlib.pylab as plt import numpy as np import torch import torchaudio import tqdm from pydub import AudioSegment, silence from transformers import pipeline from vocos import Vocos from f5_tts.model import CFM from f5_tts.model.utils import ( get_tokenizer, convert_char_to_pinyin, ) _ref_audio_cache = {} device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" # ----------------------------------------- target_sample_rate = 24000 n_mel_channels = 100 hop_length = 256 win_length = 1024 n_fft = 1024 mel_spec_type = "vocos" target_rms = 0.1 cross_fade_duration = 0.15 ode_method = "euler" nfe_step = 32 # 16, 32 cfg_strength = 2.0 sway_sampling_coef = -1.0 speed = 1.0 fix_duration = None # ----------------------------------------- # chunk text into smaller pieces def chunk_text(text, max_chars=135): """ Splits the input text into chunks, each with a maximum number of characters. Args: text (str): The text to be split. max_chars (int): The maximum number of characters per chunk. Returns: List[str]: A list of text chunks. """ chunks = [] current_chunk = "" # Split the text into sentences based on punctuation followed by whitespace sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text) for sentence in sentences: if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars: current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence else: if current_chunk: chunks.append(current_chunk.strip()) current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence if current_chunk: chunks.append(current_chunk.strip()) return chunks # load vocoder def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=device): if vocoder_name == "vocos": if is_local: print(f"Load vocos from local path {local_path}") vocoder = Vocos.from_hparams(f"{local_path}/config.yaml") state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location="cpu") vocoder.load_state_dict(state_dict) vocoder = vocoder.eval().to(device) else: print("Download Vocos from huggingface charactr/vocos-mel-24khz") vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device) elif vocoder_name == "bigvgan": try: from third_party.BigVGAN import bigvgan except ImportError: print("You need to follow the README to init submodule and change the BigVGAN source code.") if is_local: """download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main""" vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False) else: vocoder = bigvgan.BigVGAN.from_pretrained("nvidia/bigvgan_v2_24khz_100band_256x", use_cuda_kernel=False) vocoder.remove_weight_norm() vocoder = vocoder.eval().to(device) return vocoder # load asr pipeline asr_pipe = None def initialize_asr_pipeline(device=device, dtype=None): if dtype is None: dtype = ( torch.float16 if device == "cuda" and torch.cuda.get_device_properties(device).major >= 6 else torch.float32 ) global asr_pipe asr_pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-large-v3-turbo", torch_dtype=dtype, device=device, ) # load model checkpoint for inference def load_checkpoint(model, ckpt_path, device, dtype=None, use_ema=True): if dtype is None: dtype = ( torch.float16 if device == "cuda" and torch.cuda.get_device_properties(device).major >= 6 else torch.float32 ) model = model.to(dtype) ckpt_type = ckpt_path.split(".")[-1] if ckpt_type == "safetensors": from safetensors.torch import load_file checkpoint = load_file(ckpt_path) else: checkpoint = torch.load(ckpt_path, weights_only=True) if use_ema: if ckpt_type == "safetensors": checkpoint = {"ema_model_state_dict": checkpoint} checkpoint["model_state_dict"] = { k.replace("ema_model.", ""): v for k, v in checkpoint["ema_model_state_dict"].items() if k not in ["initted", "step"] } # patch for backward compatibility, 305e3ea for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]: if key in checkpoint["model_state_dict"]: del checkpoint["model_state_dict"][key] model.load_state_dict(checkpoint["model_state_dict"]) else: if ckpt_type == "safetensors": checkpoint = {"model_state_dict": checkpoint} model.load_state_dict(checkpoint["model_state_dict"]) return model.to(device) # load model for inference def load_model( model_cls, model_cfg, ckpt_path, mel_spec_type=mel_spec_type, vocab_file="", ode_method=ode_method, use_ema=True, device=device, ): if vocab_file == "": vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt")) tokenizer = "custom" print("\nvocab : ", vocab_file) print("tokenizer : ", tokenizer) print("model : ", ckpt_path, "\n") vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer) model = CFM( transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), mel_spec_kwargs=dict( n_fft=n_fft, hop_length=hop_length, win_length=win_length, n_mel_channels=n_mel_channels, target_sample_rate=target_sample_rate, mel_spec_type=mel_spec_type, ), odeint_kwargs=dict( method=ode_method, ), vocab_char_map=vocab_char_map, ).to(device) dtype = torch.float32 if mel_spec_type == "bigvgan" else None model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema) return model def remove_silence_edges(audio, silence_threshold=-42): # Remove silence from the start non_silent_start_idx = silence.detect_leading_silence(audio, silence_threshold=silence_threshold) audio = audio[non_silent_start_idx:] # Remove silence from the end non_silent_end_duration = audio.duration_seconds for ms in reversed(audio): if ms.dBFS > silence_threshold: break non_silent_end_duration -= 0.001 trimmed_audio = audio[: int(non_silent_end_duration * 1000)] return trimmed_audio # preprocess reference audio and text def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_info=print, device=device): show_info("Converting audio...") with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: aseg = AudioSegment.from_file(ref_audio_orig) if clip_short: # 1. try to find long silence for clipping non_silent_segs = silence.split_on_silence( aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10 ) non_silent_wave = AudioSegment.silent(duration=0) for non_silent_seg in non_silent_segs: if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000: show_info("Audio is over 15s, clipping short. (1)") break non_silent_wave += non_silent_seg # 2. try to find short silence for clipping if 1. failed if len(non_silent_wave) > 15000: non_silent_segs = silence.split_on_silence( aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10 ) non_silent_wave = AudioSegment.silent(duration=0) for non_silent_seg in non_silent_segs: if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000: show_info("Audio is over 15s, clipping short. (2)") break non_silent_wave += non_silent_seg aseg = non_silent_wave # 3. if no proper silence found for clipping if len(aseg) > 15000: aseg = aseg[:15000] show_info("Audio is over 15s, clipping short. (3)") aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50) aseg.export(f.name, format="wav") ref_audio = f.name # Compute a hash of the reference audio file with open(ref_audio, "rb") as audio_file: audio_data = audio_file.read() audio_hash = hashlib.md5(audio_data).hexdigest() if not ref_text.strip(): global _ref_audio_cache if audio_hash in _ref_audio_cache: # Use cached asr transcription show_info("Using cached reference text...") ref_text = _ref_audio_cache[audio_hash] else: global asr_pipe if asr_pipe is None: initialize_asr_pipeline(device=device) show_info("No reference text provided, transcribing reference audio...") ref_text = asr_pipe( ref_audio, chunk_length_s=30, batch_size=128, generate_kwargs={"task": "transcribe"}, return_timestamps=False, )["text"].strip() # Cache the transcribed text (not caching custom ref_text, enabling users to do manual tweak) _ref_audio_cache[audio_hash] = ref_text else: show_info("Using custom reference text...") # Ensure ref_text ends with a proper sentence-ending punctuation if not ref_text.endswith(". ") and not ref_text.endswith("。"): if ref_text.endswith("."): ref_text += " " else: ref_text += ". " print("ref_text ", ref_text) return ref_audio, ref_text # infer process: chunk text -> infer batches [i.e. infer_batch_process()] def infer_process( ref_audio, ref_text, gen_text, model_obj, vocoder, mel_spec_type=mel_spec_type, show_info=print, progress=tqdm, target_rms=target_rms, cross_fade_duration=cross_fade_duration, nfe_step=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, speed=speed, fix_duration=fix_duration, device=device, ): # Split the input text into batches audio, sr = torchaudio.load(ref_audio) max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr)) gen_text_batches = chunk_text(gen_text, max_chars=max_chars) for i, gen_text in enumerate(gen_text_batches): print(f"gen_text {i}", gen_text) show_info(f"Generating audio in {len(gen_text_batches)} batches...") return infer_batch_process( (audio, sr), ref_text, gen_text_batches, model_obj, vocoder, mel_spec_type=mel_spec_type, progress=progress, target_rms=target_rms, cross_fade_duration=cross_fade_duration, nfe_step=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, speed=speed, fix_duration=fix_duration, device=device, ) # infer batches def infer_batch_process( ref_audio, ref_text, gen_text_batches, model_obj, vocoder, mel_spec_type="vocos", progress=tqdm, target_rms=0.1, cross_fade_duration=0.15, nfe_step=32, cfg_strength=2.0, sway_sampling_coef=-1, speed=1, fix_duration=None, device=None, ): audio, sr = ref_audio if audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True) rms = torch.sqrt(torch.mean(torch.square(audio))) if rms < target_rms: audio = audio * target_rms / rms if sr != target_sample_rate: resampler = torchaudio.transforms.Resample(sr, target_sample_rate) audio = resampler(audio) audio = audio.to(device) generated_waves = [] spectrograms = [] if len(ref_text[-1].encode("utf-8")) == 1: ref_text = ref_text + " " for i, gen_text in enumerate(progress.tqdm(gen_text_batches)): # Prepare the text text_list = [ref_text + gen_text] final_text_list = convert_char_to_pinyin(text_list) ref_audio_len = audio.shape[-1] // hop_length if fix_duration is not None: duration = int(fix_duration * target_sample_rate / hop_length) else: # Calculate duration ref_text_len = len(ref_text.encode("utf-8")) gen_text_len = len(gen_text.encode("utf-8")) duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) # inference with torch.inference_mode(): generated, _ = model_obj.sample( cond=audio, text=final_text_list, duration=duration, steps=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, ) generated = generated.to(torch.float32) generated = generated[:, ref_audio_len:, :] generated_mel_spec = generated.permute(0, 2, 1) if mel_spec_type == "vocos": generated_wave = vocoder.decode(generated_mel_spec) elif mel_spec_type == "bigvgan": generated_wave = vocoder(generated_mel_spec) if rms < target_rms: generated_wave = generated_wave * rms / target_rms # wav -> numpy generated_wave = generated_wave.squeeze().cpu().numpy() generated_waves.append(generated_wave) spectrograms.append(generated_mel_spec[0].cpu().numpy()) # Combine all generated waves with cross-fading if cross_fade_duration <= 0: # Simply concatenate final_wave = np.concatenate(generated_waves) else: final_wave = generated_waves[0] for i in range(1, len(generated_waves)): prev_wave = final_wave next_wave = generated_waves[i] # Calculate cross-fade samples, ensuring it does not exceed wave lengths cross_fade_samples = int(cross_fade_duration * target_sample_rate) cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave)) if cross_fade_samples <= 0: # No overlap possible, concatenate final_wave = np.concatenate([prev_wave, next_wave]) continue # Overlapping parts prev_overlap = prev_wave[-cross_fade_samples:] next_overlap = next_wave[:cross_fade_samples] # Fade out and fade in fade_out = np.linspace(1, 0, cross_fade_samples) fade_in = np.linspace(0, 1, cross_fade_samples) # Cross-faded overlap cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in # Combine new_wave = np.concatenate( [prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]] ) final_wave = new_wave # Create a combined spectrogram combined_spectrogram = np.concatenate(spectrograms, axis=1) return final_wave, target_sample_rate, combined_spectrogram # remove silence from generated wav def remove_silence_for_generated_wav(filename): aseg = AudioSegment.from_file(filename) non_silent_segs = silence.split_on_silence( aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500, seek_step=10 ) non_silent_wave = AudioSegment.silent(duration=0) for non_silent_seg in non_silent_segs: non_silent_wave += non_silent_seg aseg = non_silent_wave aseg.export(filename, format="wav") # save spectrogram def save_spectrogram(spectrogram, path): plt.figure(figsize=(12, 4)) plt.imshow(spectrogram, origin="lower", aspect="auto") plt.colorbar() plt.savefig(path) plt.close()