Spaces:
Running
Running
import gradio as gr | |
import torch | |
from diffusers import FluxPipeline | |
import huggingface_hub | |
from huggingface_hub import InferenceClient | |
import os | |
huggingface_hub.login(token=os.getenv("HUGGINGFACE_API_TOKEN")) | |
# Initialize the Flux pipeline | |
def initialize_flux_pipeline(): | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.bfloat16 | |
) | |
pipe.enable_model_cpu_offload() | |
pipe.load_lora_weights("EvanZhouDev/open-genmoji", weight_name="flux-dev.safetensors") | |
return pipe | |
flux_pipeline = initialize_flux_pipeline() | |
# Initialize the language model client | |
llm_client = InferenceClient("Qwen/Qwen2.5-72B-Instruct", token=os.getenv("HUGGINGFACE_API_TOKEN")) | |
# Function to refine the prompt | |
def refine_prompt(original_prompt): | |
messages = [ | |
{ | |
"role": "system", | |
"content": ( | |
"You are helping create a prompt for a Emoji generation image model. An emoji must be easily " | |
"interpreted when small so details must be exaggerated to be clear. Your goal is to use descriptions " | |
"to achieve this.\n\nYou will receive a user description, and you must rephrase it to consist of " | |
"short phrases separated by periods, adding detail to everything the user provides.\n\nAdd describe " | |
"the color of all parts or components of the emoji. Unless otherwise specified by the user, do not " | |
"describe people. Do not describe the background of the image. Your output should be in the format:\n\n" | |
"```emoji of {description}. {addon phrases}. 3D lighting. no cast shadows.```\n\nThe description " | |
"should be a 1 sentence of your interpretation of the emoji. Then, you may choose to add addon phrases." | |
" You must use the following in the given scenarios:\n\n- \"cute.\": If generating anything that's not " | |
"an object, and also not a human\n- \"enlarged head in cartoon style.\": ONLY animals\n- \"head is " | |
"turned towards viewer.\": ONLY humans or animals\n- \"detailed texture.\": ONLY objects\n\nFurther " | |
"addon phrases may be added to ensure the clarity of the emoji." | |
), | |
}, | |
{"role": "user", "content": original_prompt}, | |
] | |
completion = llm_client.chat_completion(messages, max_tokens=100) | |
refined = completion["choices"][0]["message"]["content"].strip() | |
return refined | |
# Define the process function | |
def process(prompt, guidance_scale, num_inference_steps, height, width, seed): | |
print(f"Original Prompt: {prompt}") | |
# Refine the prompt | |
try: | |
refined_prompt = refine_prompt(prompt) | |
print(f"Refined Prompt: {refined_prompt}") | |
except Exception as e: | |
return f"Error refining prompt: {str(e)}" | |
# Set the random generator seed | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
try: | |
# Generate the image | |
output = flux_pipeline( | |
prompt=refined_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
height=height, | |
width=width, | |
generator=generator, | |
) | |
image = output.images[0] | |
return image | |
except Exception as e: | |
return f"Error generating image: {str(e)}" | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Flux Text-to-Image Generator with Prompt Refinement") | |
# User inputs | |
with gr.Row(): | |
prompt_input = gr.Textbox(label="Enter a Prompt", placeholder="Describe your image") | |
guidance_scale_input = gr.Slider( | |
label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.5, step=0.1 | |
) | |
with gr.Row(): | |
num_inference_steps_input = gr.Slider( | |
label="Inference Steps", minimum=1, maximum=100, value=50, step=1 | |
) | |
seed_input = gr.Number(label="Seed", value=42, precision=0) | |
with gr.Row(): | |
height_input = gr.Slider(label="Height", minimum=256, maximum=2048, value=768, step=64) | |
width_input = gr.Slider(label="Width", minimum=256, maximum=2048, value=1360, step=64) | |
# Output components | |
refined_prompt_output = gr.Textbox(label="Refined Prompt", interactive=False) | |
image_output = gr.Image(label="Generated Image") | |
# Button to generate the image | |
generate_button = gr.Button("Generate Image") | |
# Define button click behavior | |
generate_button.click( | |
fn=lambda prompt, *args: (refine_prompt(prompt), process(prompt, *args)), | |
inputs=[ | |
prompt_input, | |
guidance_scale_input, | |
num_inference_steps_input, | |
height_input, | |
width_input, | |
seed_input, | |
], | |
outputs=[refined_prompt_output, image_output], | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch(show_error=True) | |