Spaces:
Running
Running
Upload 2 files
Browse files- app.py +393 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
# -------------------- base color ------------------
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
class BaseColor(nn.Module):
|
10 |
+
def __init__(self):
|
11 |
+
super(BaseColor, self).__init__()
|
12 |
+
|
13 |
+
self.l_cent = 50.
|
14 |
+
self.l_norm = 100.
|
15 |
+
self.ab_norm = 110.
|
16 |
+
|
17 |
+
def normalize_l(self, in_l):
|
18 |
+
return (in_l-self.l_cent)/self.l_norm
|
19 |
+
|
20 |
+
def unnormalize_l(self, in_l):
|
21 |
+
return in_l*self.l_norm + self.l_cent
|
22 |
+
|
23 |
+
def normalize_ab(self, in_ab):
|
24 |
+
return in_ab/self.ab_norm
|
25 |
+
|
26 |
+
def unnormalize_ab(self, in_ab):
|
27 |
+
return in_ab*self.ab_norm
|
28 |
+
|
29 |
+
# ------------------ eccv16 ---------------------
|
30 |
+
|
31 |
+
import numpy as np
|
32 |
+
|
33 |
+
|
34 |
+
class ECCVGenerator(BaseColor):
|
35 |
+
def __init__(self, norm_layer=nn.BatchNorm2d):
|
36 |
+
super(ECCVGenerator, self).__init__()
|
37 |
+
|
38 |
+
model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
39 |
+
model1+=[nn.ReLU(True),]
|
40 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),]
|
41 |
+
model1+=[nn.ReLU(True),]
|
42 |
+
model1+=[norm_layer(64),]
|
43 |
+
|
44 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
45 |
+
model2+=[nn.ReLU(True),]
|
46 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),]
|
47 |
+
model2+=[nn.ReLU(True),]
|
48 |
+
model2+=[norm_layer(128),]
|
49 |
+
|
50 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
51 |
+
model3+=[nn.ReLU(True),]
|
52 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
53 |
+
model3+=[nn.ReLU(True),]
|
54 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),]
|
55 |
+
model3+=[nn.ReLU(True),]
|
56 |
+
model3+=[norm_layer(256),]
|
57 |
+
|
58 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
59 |
+
model4+=[nn.ReLU(True),]
|
60 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
61 |
+
model4+=[nn.ReLU(True),]
|
62 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
63 |
+
model4+=[nn.ReLU(True),]
|
64 |
+
model4+=[norm_layer(512),]
|
65 |
+
|
66 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
67 |
+
model5+=[nn.ReLU(True),]
|
68 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
69 |
+
model5+=[nn.ReLU(True),]
|
70 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
71 |
+
model5+=[nn.ReLU(True),]
|
72 |
+
model5+=[norm_layer(512),]
|
73 |
+
|
74 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
75 |
+
model6+=[nn.ReLU(True),]
|
76 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
77 |
+
model6+=[nn.ReLU(True),]
|
78 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
79 |
+
model6+=[nn.ReLU(True),]
|
80 |
+
model6+=[norm_layer(512),]
|
81 |
+
|
82 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
83 |
+
model7+=[nn.ReLU(True),]
|
84 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
85 |
+
model7+=[nn.ReLU(True),]
|
86 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
87 |
+
model7+=[nn.ReLU(True),]
|
88 |
+
model7+=[norm_layer(512),]
|
89 |
+
|
90 |
+
model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),]
|
91 |
+
model8+=[nn.ReLU(True),]
|
92 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
93 |
+
model8+=[nn.ReLU(True),]
|
94 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
95 |
+
model8+=[nn.ReLU(True),]
|
96 |
+
|
97 |
+
model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),]
|
98 |
+
|
99 |
+
self.model1 = nn.Sequential(*model1)
|
100 |
+
self.model2 = nn.Sequential(*model2)
|
101 |
+
self.model3 = nn.Sequential(*model3)
|
102 |
+
self.model4 = nn.Sequential(*model4)
|
103 |
+
self.model5 = nn.Sequential(*model5)
|
104 |
+
self.model6 = nn.Sequential(*model6)
|
105 |
+
self.model7 = nn.Sequential(*model7)
|
106 |
+
self.model8 = nn.Sequential(*model8)
|
107 |
+
|
108 |
+
self.softmax = nn.Softmax(dim=1)
|
109 |
+
self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False)
|
110 |
+
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear')
|
111 |
+
|
112 |
+
def forward(self, input_l):
|
113 |
+
conv1_2 = self.model1(self.normalize_l(input_l))
|
114 |
+
conv2_2 = self.model2(conv1_2)
|
115 |
+
conv3_3 = self.model3(conv2_2)
|
116 |
+
conv4_3 = self.model4(conv3_3)
|
117 |
+
conv5_3 = self.model5(conv4_3)
|
118 |
+
conv6_3 = self.model6(conv5_3)
|
119 |
+
conv7_3 = self.model7(conv6_3)
|
120 |
+
conv8_3 = self.model8(conv7_3)
|
121 |
+
out_reg = self.model_out(self.softmax(conv8_3))
|
122 |
+
|
123 |
+
return self.unnormalize_ab(self.upsample4(out_reg))
|
124 |
+
|
125 |
+
def eccv16(pretrained=True):
|
126 |
+
model = ECCVGenerator()
|
127 |
+
if(pretrained):
|
128 |
+
import torch.utils.model_zoo as model_zoo
|
129 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/colorization_release_v2-9b330a0b.pth',map_location='cpu',check_hash=True))
|
130 |
+
return model
|
131 |
+
|
132 |
+
# ------------------ siggraph17 ---------------------
|
133 |
+
|
134 |
+
|
135 |
+
class SIGGRAPHGenerator(BaseColor):
|
136 |
+
def __init__(self, norm_layer=nn.BatchNorm2d, classes=529):
|
137 |
+
super(SIGGRAPHGenerator, self).__init__()
|
138 |
+
|
139 |
+
# Conv1
|
140 |
+
model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
141 |
+
model1+=[nn.ReLU(True),]
|
142 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
143 |
+
model1+=[nn.ReLU(True),]
|
144 |
+
model1+=[norm_layer(64),]
|
145 |
+
# add a subsampling operation
|
146 |
+
|
147 |
+
# Conv2
|
148 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
149 |
+
model2+=[nn.ReLU(True),]
|
150 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
151 |
+
model2+=[nn.ReLU(True),]
|
152 |
+
model2+=[norm_layer(128),]
|
153 |
+
# add a subsampling layer operation
|
154 |
+
|
155 |
+
# Conv3
|
156 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
157 |
+
model3+=[nn.ReLU(True),]
|
158 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
159 |
+
model3+=[nn.ReLU(True),]
|
160 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
161 |
+
model3+=[nn.ReLU(True),]
|
162 |
+
model3+=[norm_layer(256),]
|
163 |
+
# add a subsampling layer operation
|
164 |
+
|
165 |
+
# Conv4
|
166 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
167 |
+
model4+=[nn.ReLU(True),]
|
168 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
169 |
+
model4+=[nn.ReLU(True),]
|
170 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
171 |
+
model4+=[nn.ReLU(True),]
|
172 |
+
model4+=[norm_layer(512),]
|
173 |
+
|
174 |
+
# Conv5
|
175 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
176 |
+
model5+=[nn.ReLU(True),]
|
177 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
178 |
+
model5+=[nn.ReLU(True),]
|
179 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
180 |
+
model5+=[nn.ReLU(True),]
|
181 |
+
model5+=[norm_layer(512),]
|
182 |
+
|
183 |
+
# Conv6
|
184 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
185 |
+
model6+=[nn.ReLU(True),]
|
186 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
187 |
+
model6+=[nn.ReLU(True),]
|
188 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
189 |
+
model6+=[nn.ReLU(True),]
|
190 |
+
model6+=[norm_layer(512),]
|
191 |
+
|
192 |
+
# Conv7
|
193 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
194 |
+
model7+=[nn.ReLU(True),]
|
195 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
196 |
+
model7+=[nn.ReLU(True),]
|
197 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
198 |
+
model7+=[nn.ReLU(True),]
|
199 |
+
model7+=[norm_layer(512),]
|
200 |
+
|
201 |
+
# Conv7
|
202 |
+
model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)]
|
203 |
+
model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
204 |
+
|
205 |
+
model8=[nn.ReLU(True),]
|
206 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
207 |
+
model8+=[nn.ReLU(True),]
|
208 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
209 |
+
model8+=[nn.ReLU(True),]
|
210 |
+
model8+=[norm_layer(256),]
|
211 |
+
|
212 |
+
# Conv9
|
213 |
+
model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
214 |
+
model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
215 |
+
# add the two feature maps above
|
216 |
+
|
217 |
+
model9=[nn.ReLU(True),]
|
218 |
+
model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
219 |
+
model9+=[nn.ReLU(True),]
|
220 |
+
model9+=[norm_layer(128),]
|
221 |
+
|
222 |
+
# Conv10
|
223 |
+
model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
224 |
+
model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
225 |
+
# add the two feature maps above
|
226 |
+
|
227 |
+
model10=[nn.ReLU(True),]
|
228 |
+
model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),]
|
229 |
+
model10+=[nn.LeakyReLU(negative_slope=.2),]
|
230 |
+
|
231 |
+
# classification output
|
232 |
+
model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
233 |
+
|
234 |
+
# regression output
|
235 |
+
model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
236 |
+
model_out+=[nn.Tanh()]
|
237 |
+
|
238 |
+
self.model1 = nn.Sequential(*model1)
|
239 |
+
self.model2 = nn.Sequential(*model2)
|
240 |
+
self.model3 = nn.Sequential(*model3)
|
241 |
+
self.model4 = nn.Sequential(*model4)
|
242 |
+
self.model5 = nn.Sequential(*model5)
|
243 |
+
self.model6 = nn.Sequential(*model6)
|
244 |
+
self.model7 = nn.Sequential(*model7)
|
245 |
+
self.model8up = nn.Sequential(*model8up)
|
246 |
+
self.model8 = nn.Sequential(*model8)
|
247 |
+
self.model9up = nn.Sequential(*model9up)
|
248 |
+
self.model9 = nn.Sequential(*model9)
|
249 |
+
self.model10up = nn.Sequential(*model10up)
|
250 |
+
self.model10 = nn.Sequential(*model10)
|
251 |
+
self.model3short8 = nn.Sequential(*model3short8)
|
252 |
+
self.model2short9 = nn.Sequential(*model2short9)
|
253 |
+
self.model1short10 = nn.Sequential(*model1short10)
|
254 |
+
|
255 |
+
self.model_class = nn.Sequential(*model_class)
|
256 |
+
self.model_out = nn.Sequential(*model_out)
|
257 |
+
|
258 |
+
self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),])
|
259 |
+
self.softmax = nn.Sequential(*[nn.Softmax(dim=1),])
|
260 |
+
|
261 |
+
def forward(self, input_A, input_B=None, mask_B=None):
|
262 |
+
if(input_B is None):
|
263 |
+
input_B = torch.cat((input_A*0, input_A*0), dim=1)
|
264 |
+
if(mask_B is None):
|
265 |
+
mask_B = input_A*0
|
266 |
+
|
267 |
+
conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1))
|
268 |
+
conv2_2 = self.model2(conv1_2[:,:,::2,::2])
|
269 |
+
conv3_3 = self.model3(conv2_2[:,:,::2,::2])
|
270 |
+
conv4_3 = self.model4(conv3_3[:,:,::2,::2])
|
271 |
+
conv5_3 = self.model5(conv4_3)
|
272 |
+
conv6_3 = self.model6(conv5_3)
|
273 |
+
conv7_3 = self.model7(conv6_3)
|
274 |
+
|
275 |
+
conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3)
|
276 |
+
conv8_3 = self.model8(conv8_up)
|
277 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
278 |
+
conv9_3 = self.model9(conv9_up)
|
279 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
280 |
+
conv10_2 = self.model10(conv10_up)
|
281 |
+
out_reg = self.model_out(conv10_2)
|
282 |
+
|
283 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
284 |
+
conv9_3 = self.model9(conv9_up)
|
285 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
286 |
+
conv10_2 = self.model10(conv10_up)
|
287 |
+
out_reg = self.model_out(conv10_2)
|
288 |
+
|
289 |
+
return self.unnormalize_ab(out_reg)
|
290 |
+
|
291 |
+
def siggraph17(pretrained=True):
|
292 |
+
model = SIGGRAPHGenerator()
|
293 |
+
if(pretrained):
|
294 |
+
import torch.utils.model_zoo as model_zoo
|
295 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True))
|
296 |
+
return model
|
297 |
+
|
298 |
+
# ------------------ utils ---------------------
|
299 |
+
|
300 |
+
|
301 |
+
from PIL import Image
|
302 |
+
import numpy as np
|
303 |
+
from skimage import color
|
304 |
+
import torch.nn.functional as F
|
305 |
+
|
306 |
+
def load_img(img_path):
|
307 |
+
out_np = np.asarray(Image.open(img_path))
|
308 |
+
if(out_np.ndim==2):
|
309 |
+
out_np = np.tile(out_np[:,:,None],3)
|
310 |
+
return out_np
|
311 |
+
|
312 |
+
def resize_img(img, HW=(256,256), resample=3):
|
313 |
+
return np.asarray(Image.fromarray(img).resize((HW[1],HW[0]), resample=resample))
|
314 |
+
|
315 |
+
def preprocess_img(img_rgb_orig, HW=(256,256), resample=3):
|
316 |
+
# return original size L and resized L as torch Tensors
|
317 |
+
img_rgb_rs = resize_img(img_rgb_orig, HW=HW, resample=resample)
|
318 |
+
|
319 |
+
img_lab_orig = color.rgb2lab(img_rgb_orig)
|
320 |
+
img_lab_rs = color.rgb2lab(img_rgb_rs)
|
321 |
+
|
322 |
+
img_l_orig = img_lab_orig[:,:,0]
|
323 |
+
img_l_rs = img_lab_rs[:,:,0]
|
324 |
+
|
325 |
+
tens_orig_l = torch.Tensor(img_l_orig)[None,None,:,:]
|
326 |
+
tens_rs_l = torch.Tensor(img_l_rs)[None,None,:,:]
|
327 |
+
|
328 |
+
return (tens_orig_l, tens_rs_l)
|
329 |
+
|
330 |
+
def postprocess_tens(tens_orig_l, out_ab, mode='bilinear'):
|
331 |
+
# tens_orig_l 1 x 1 x H_orig x W_orig
|
332 |
+
# out_ab 1 x 2 x H x W
|
333 |
+
|
334 |
+
HW_orig = tens_orig_l.shape[2:]
|
335 |
+
HW = out_ab.shape[2:]
|
336 |
+
|
337 |
+
# call resize function if needed
|
338 |
+
if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]):
|
339 |
+
out_ab_orig = F.interpolate(out_ab, size=HW_orig, mode='bilinear')
|
340 |
+
else:
|
341 |
+
out_ab_orig = out_ab
|
342 |
+
|
343 |
+
out_lab_orig = torch.cat((tens_orig_l, out_ab_orig), dim=1)
|
344 |
+
return color.lab2rgb(out_lab_orig.data.cpu().numpy()[0,...].transpose((1,2,0)))
|
345 |
+
|
346 |
+
|
347 |
+
# parser = argparse.ArgumentParser()
|
348 |
+
# parser.add_argument('-i','--img_path', type=str, default='imgs/test.jpg')
|
349 |
+
# # parser.add_argument('--use_gpu', action='store_true', help='whether to use GPU')
|
350 |
+
# parser.add_argument('-o','--save_prefix', type=str, default='saved', help='will save into this file with {eccv16.png, siggraph17.png} suffixes')
|
351 |
+
# opt = parser.parse_args()
|
352 |
+
|
353 |
+
colorizer_eccv16 = eccv16(pretrained=True).eval()
|
354 |
+
colorizer_siggraph17 = siggraph17(pretrained=True).eval()
|
355 |
+
|
356 |
+
# if(opt.use_gpu):
|
357 |
+
# colorizer_eccv16.cuda()
|
358 |
+
# colorizer_siggraph17.cuda()
|
359 |
+
|
360 |
+
input_image = st.file_uploader("Upload Image : ", type=["jpg", "jpeg", "png"])
|
361 |
+
|
362 |
+
if input_image is not None:
|
363 |
+
img = load_img(input_image)
|
364 |
+
(tens_l_orig, tens_l_rs) = preprocess_img(img, HW=(256,256))
|
365 |
+
|
366 |
+
img_bw = postprocess_tens(tens_l_orig, torch.cat((0*tens_l_orig,0*tens_l_orig),dim=1))
|
367 |
+
out_img_eccv16 = postprocess_tens(tens_l_orig, colorizer_eccv16(tens_l_rs).cpu())
|
368 |
+
out_img_siggraph17 = postprocess_tens(tens_l_orig, colorizer_siggraph17(tens_l_rs).cpu())
|
369 |
+
|
370 |
+
plt.imsave(f'eccv16.png{input_image.name}', out_img_eccv16)
|
371 |
+
plt.imsave(f'siggraph17.png{input_image.name}', out_img_siggraph17)
|
372 |
+
|
373 |
+
plt.figure(figsize=(12,8))
|
374 |
+
plt.subplot(2,2,1)
|
375 |
+
plt.imshow(img)
|
376 |
+
plt.title('Original')
|
377 |
+
plt.axis('off')
|
378 |
+
|
379 |
+
plt.subplot(2,2,2)
|
380 |
+
plt.imshow(img_bw)
|
381 |
+
plt.title('Input')
|
382 |
+
plt.axis('off')
|
383 |
+
|
384 |
+
plt.subplot(2,2,3)
|
385 |
+
plt.imshow(out_img_eccv16)
|
386 |
+
plt.title('Output (ECCV 16)')
|
387 |
+
plt.axis('off')
|
388 |
+
|
389 |
+
plt.subplot(2,2,4)
|
390 |
+
plt.imshow(out_img_siggraph17)
|
391 |
+
plt.title('Output (SIGGRAPH 17)')
|
392 |
+
plt.axis('off')
|
393 |
+
plt.show()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
scikit-image
|
3 |
+
numpy
|
4 |
+
matplotlib
|
5 |
+
pillow
|