File size: 10,114 Bytes
cc5d590 97bf913 649caa0 c0fdd98 a35a697 649caa0 87b0e6b 9d17c9a 649caa0 a35a697 8569432 9d17c9a 8569432 9d17c9a a35a697 9d17c9a 649caa0 9d17c9a 649caa0 a35a697 9d17c9a a35a697 649caa0 9d17c9a a35a697 649caa0 9d17c9a 649caa0 c0fdd98 8569432 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
'''
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langgraph.graph import StateGraph,END,START
from typing import TypedDict
class InputState(TypedDict):
string_var :str
numeric_var :int
def changeState(input: InputState):
print(f"Current value: {input}")
return input
# Define the LLM models
llm1 = HuggingFaceEndpoint(model='t5-small')
llm2 = HuggingFaceEndpoint(model='t5-large')
# Define the agent functions
def agent1(response):
return f"Agent 1: {response}"
def agent2(response):
return f"Agent 2: {response}"
# Define the prompts and LLM chains
chain1 = LLMChain(llm=llm1, prompt=PromptTemplate(
input_variables=["query"],
template="You are in state s1. {{query}}"
))
chain2 = LLMChain(llm=llm2, prompt=PromptTemplate(
input_variables=["query"],
template="You are in state s2. {{query}}"
))
# Create a state graph with required schemas for inputs and outputs
graph = StateGraph(InputState)
# Add states to the graph
graph.add_node("s1",changeState)
graph.add_node("s2",changeState)
# Define transitions
graph.add_edge(START, "s1") # Transition from s1 to s2
graph.add_edge("s1", "s2") # Transition from s2 to s1
graph.add_edge("s2", END)
# Initialize the current state
current_state = "s1"
def handle_input(query):
global current_state
output = ''
# Process user input based on current state
if current_state == "s1":
output = chain1.invoke(input=query) # Invoke chain1 with user input
response = agent1(output) # Process output through Agent 1
current_state = "s2" # Transition to state s2
elif current_state == "s2":
output = chain2.invoke(input=query) # Invoke chain2 with user input
response = agent2(output) # Process output through Agent 2
current_state = "s1" # Transition back to state s1
return response
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chatbot Interface")
chatbot_interface = gr.Chatbot()
user_input = gr.Textbox(label="Your Message", placeholder="Type something here...")
submit_btn = gr.Button("Send")
# Define the behavior of the submit button
submit_btn.click(
fn=lambda input_text: handle_input(input_text), # Handle user input
inputs=[user_input],
outputs=chatbot_interface
)
# Launch the Gradio application
demo.launch()
'''
from typing import Annotated, Sequence, TypedDict
import operator
import functools
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain.agents import create_openai_tools_agent
from langchain_huggingface import HuggingFacePipeline
from langgraph.graph import StateGraph, END
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# SETUP: HuggingFace Model and Pipeline
#name = "meta-llama/Llama-3.2-1B"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
#name="deepseek-ai/deepseek-llm-7b-chat"
#name="openai-community/gpt2"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
#name="microsoft/Phi-3.5-mini-instruct"
name="Qwen/Qwen2.5-7B-Instruct-1M"
tokenizer = AutoTokenizer.from_pretrained(name,truncation=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(name)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
max_new_tokens=500, # text to generate for outputs
)
print ("pipeline is created")
# Wrap in LangChain's HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)
# Members and Final Options
members = ["Researcher", "Coder"]
options = ["FINISH"] + members
# Supervisor prompt
system_prompt = (
"You are a supervisor tasked with managing a conversation between the following workers: {members}."
" Given the following user request, respond with the workers to act next. Each worker will perform a task"
" and respond with their results and status. When all workers are finished, respond with FINISH."
)
# Prompt template required for the workflow
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
("system", "Given the conversation above, who should act next? Or Should we FINISH? Select one of: {options}"),
]
).partial(options=str(options), members=", ".join(members))
print ("Prompt Template created")
# Supervisor routing logic
def route_tool_response(llm_response):
"""
Parse the LLM response to determine the next step based on routing logic.
"""
if "FINISH" in llm_response:
return "FINISH"
for member in members:
if member in llm_response:
return member
return "Unknown"
def supervisor_chain(state):
"""
Supervisor logic to interact with HuggingFacePipeline and decide the next worker.
"""
messages = state.get("messages", [])
print(f"[TRACE] Supervisor received messages: {messages}") # Trace input messages
user_prompt = prompt.format(messages=messages)
try:
llm_response = pipe(user_prompt, max_new_tokens=500)[0]["generated_text"]
print(f"[TRACE] LLM Response: {llm_response}") # Trace LLM interaction
except Exception as e:
raise RuntimeError(f"LLM processing error: {e}")
next_action = route_tool_response(llm_response)
print(f"[TRACE] Supervisor deciding next action: {next_action}") # Trace state changes
return {"next": next_action}
# AgentState definition
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
next: str
# Create tools
tavily_tool = TavilySearchResults(max_results=5)
python_repl_tool = PythonREPLTool()
# Create agents with their respective prompts
research_agent = create_openai_tools_agent(
llm=llm,
tools=[tavily_tool],
prompt=ChatPromptTemplate.from_messages(
[
SystemMessage(content="You are a web researcher."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"), # Add required placeholder
]
),
)
print ("Created agents with their respective prompts")
code_agent = create_openai_tools_agent(
llm=llm,
tools=[python_repl_tool],
prompt=ChatPromptTemplate.from_messages(
[
SystemMessage(content="You may generate safe Python code for analysis."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"), # Add required placeholder
]
),
)
print ("create_openai_tools_agent")
# Create the workflow
workflow = StateGraph(AgentState)
# Nodes
workflow.add_node("Researcher", research_agent) # Pass the agent directly (no .run required)
workflow.add_node("Coder", code_agent) # Pass the agent directly
workflow.add_node("supervisor", supervisor_chain)
# Add edges for workflow transitions
for member in members:
workflow.add_edge(member, "supervisor")
workflow.add_conditional_edges(
"supervisor",
lambda x: x["next"],
{k: k for k in members} | {"FINISH": END} # Dynamically map workers to their actions
)
print("[DEBUG] Workflow edges added: supervisor -> members/FINISH based on 'next'")
# Define entry point
workflow.set_entry_point("supervisor")
print(workflow)
# Compile the workflow
graph = workflow.compile()
from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))
# Properly formatted initial state
initial_state = {
"messages": [
#HumanMessage(content="Code hello world and print it to the terminal.") # Correct format for user input
HumanMessage(content="Write Code for printing \"hello world\" in Python. Keep it precise.") # Correct format for user input
]
}
# Execute the workflow
try:
print(f"[TRACE] Initial workflow state: {initial_state}")
result = graph.invoke(initial_state)
print(f"[TRACE] Workflow Result: {result}") # Final workflow result
except Exception as e:
print(f"[ERROR] Workflow execution failed: {e}")
|