File size: 10,114 Bytes
cc5d590
97bf913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649caa0
c0fdd98
a35a697
649caa0
 
 
 
87b0e6b
9d17c9a
 
 
 
 
 
 
 
 
649caa0
 
 
 
 
 
 
 
 
 
 
 
 
a35a697
 
 
 
 
 
 
 
 
8569432
 
9d17c9a
8569432
 
9d17c9a
 
a35a697
 
9d17c9a
 
 
649caa0
 
9d17c9a
649caa0
 
 
 
 
a35a697
9d17c9a
a35a697
649caa0
9d17c9a
 
a35a697
649caa0
9d17c9a
649caa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0fdd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8569432
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
'''
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()



import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langgraph.graph import StateGraph,END,START
from typing import TypedDict

class InputState(TypedDict):
    string_var :str
    numeric_var :int 
    
def changeState(input: InputState):
    print(f"Current value: {input}")
    return input

# Define the LLM models
llm1 = HuggingFaceEndpoint(model='t5-small')
llm2 = HuggingFaceEndpoint(model='t5-large')

# Define the agent functions
def agent1(response):
    return f"Agent 1: {response}"

def agent2(response):
    return f"Agent 2: {response}"

# Define the prompts and LLM chains
chain1 = LLMChain(llm=llm1, prompt=PromptTemplate(
    input_variables=["query"], 
    template="You are in state s1. {{query}}"
))
chain2 = LLMChain(llm=llm2, prompt=PromptTemplate(
    input_variables=["query"], 
    template="You are in state s2. {{query}}"
))


# Create a state graph with required schemas for inputs and outputs
graph = StateGraph(InputState)

# Add states to the graph
graph.add_node("s1",changeState)
graph.add_node("s2",changeState)

# Define transitions
graph.add_edge(START, "s1")  # Transition from s1 to s2
graph.add_edge("s1", "s2")   # Transition from s2 to s1
graph.add_edge("s2", END)

# Initialize the current state
current_state = "s1"

def handle_input(query):
    global current_state
    output = ''
    
    # Process user input based on current state
    if current_state == "s1":
        output = chain1.invoke(input=query)  # Invoke chain1 with user input
        response = agent1(output)  # Process output through Agent 1
        current_state = "s2"  # Transition to state s2
    elif current_state == "s2":
        output = chain2.invoke(input=query)  # Invoke chain2 with user input
        response = agent2(output)  # Process output through Agent 2
        current_state = "s1"  # Transition back to state s1

    return response

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Chatbot Interface")
    chatbot_interface = gr.Chatbot()
    user_input = gr.Textbox(label="Your Message", placeholder="Type something here...")
    submit_btn = gr.Button("Send")

    # Define the behavior of the submit button
    submit_btn.click(
        fn=lambda input_text: handle_input(input_text),  # Handle user input
        inputs=[user_input],
        outputs=chatbot_interface
    )

# Launch the Gradio application
demo.launch()
'''
from typing import Annotated, Sequence, TypedDict
import operator
import functools

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain.agents import create_openai_tools_agent
from langchain_huggingface import HuggingFacePipeline
from langgraph.graph import StateGraph, END

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# SETUP: HuggingFace Model and Pipeline
#name = "meta-llama/Llama-3.2-1B"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
#name="deepseek-ai/deepseek-llm-7b-chat"
#name="openai-community/gpt2"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
#name="microsoft/Phi-3.5-mini-instruct"
name="Qwen/Qwen2.5-7B-Instruct-1M"

tokenizer = AutoTokenizer.from_pretrained(name,truncation=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(name)

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    max_new_tokens=500,  # text to generate for outputs
)
print ("pipeline is created")

# Wrap in LangChain's HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)

# Members and Final Options
members = ["Researcher", "Coder"]
options = ["FINISH"] + members

# Supervisor prompt
system_prompt = (
    "You are a supervisor tasked with managing a conversation between the following workers: {members}."
    " Given the following user request, respond with the workers to act next. Each worker will perform a task"
    " and respond with their results and status. When all workers are finished, respond with FINISH."
)

# Prompt template required for the workflow
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        MessagesPlaceholder(variable_name="messages"),
        ("system", "Given the conversation above, who should act next? Or Should we FINISH? Select one of: {options}"),
    ]
).partial(options=str(options), members=", ".join(members))

print ("Prompt Template created")

# Supervisor routing logic
def route_tool_response(llm_response):
    """
    Parse the LLM response to determine the next step based on routing logic.
    """
    if "FINISH" in llm_response:
        return "FINISH"
    for member in members:
        if member in llm_response:
            return member
    return "Unknown"

def supervisor_chain(state):
    """
    Supervisor logic to interact with HuggingFacePipeline and decide the next worker.
    """
    messages = state.get("messages", [])
    print(f"[TRACE] Supervisor received messages: {messages}")  # Trace input messages
    user_prompt = prompt.format(messages=messages)

    try:
        llm_response = pipe(user_prompt, max_new_tokens=500)[0]["generated_text"]
        print(f"[TRACE] LLM Response: {llm_response}")  # Trace LLM interaction
    except Exception as e:
        raise RuntimeError(f"LLM processing error: {e}")

    next_action = route_tool_response(llm_response)
    print(f"[TRACE] Supervisor deciding next action: {next_action}")  # Trace state changes
    return {"next": next_action}

# AgentState definition
class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

# Create tools
tavily_tool = TavilySearchResults(max_results=5)
python_repl_tool = PythonREPLTool()

# Create agents with their respective prompts
research_agent = create_openai_tools_agent(
    llm=llm,
    tools=[tavily_tool],
    prompt=ChatPromptTemplate.from_messages(
        [
            SystemMessage(content="You are a web researcher."),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),  # Add required placeholder
        ]
    ),
)

print ("Created agents with their respective prompts")

code_agent = create_openai_tools_agent(
    llm=llm,
    tools=[python_repl_tool],
    prompt=ChatPromptTemplate.from_messages(
        [
            SystemMessage(content="You may generate safe Python code for analysis."),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),  # Add required placeholder
        ]
    ),
)


print ("create_openai_tools_agent")


# Create the workflow
workflow = StateGraph(AgentState)

# Nodes
workflow.add_node("Researcher", research_agent)  # Pass the agent directly (no .run required)
workflow.add_node("Coder", code_agent)          # Pass the agent directly
workflow.add_node("supervisor", supervisor_chain)

# Add edges for workflow transitions
for member in members:
    workflow.add_edge(member, "supervisor")

workflow.add_conditional_edges(
    "supervisor",
    lambda x: x["next"],
    {k: k for k in members} | {"FINISH": END}  # Dynamically map workers to their actions
)
print("[DEBUG] Workflow edges added: supervisor -> members/FINISH based on 'next'")

# Define entry point
workflow.set_entry_point("supervisor")

print(workflow)

# Compile the workflow
graph = workflow.compile()

from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))

# Properly formatted initial state
initial_state = {
    "messages": [
        #HumanMessage(content="Code hello world and print it to the terminal.")  # Correct format for user input
        HumanMessage(content="Write Code for printing \"hello world\" in Python. Keep it precise.")  # Correct format for user input
    ]
}

# Execute the workflow
try:
    print(f"[TRACE] Initial workflow state: {initial_state}")
    result = graph.invoke(initial_state)

    print(f"[TRACE] Workflow Result: {result}")  # Final workflow result
except Exception as e:
    print(f"[ERROR] Workflow execution failed: {e}")