Upload 3 files
Browse files- Dockerfile +14 -0
- main.py +569 -0
- requirements.txt +5 -0
Dockerfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
WORKDIR /code
|
7 |
+
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
11 |
+
|
12 |
+
COPY . .
|
13 |
+
|
14 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # Import necessary libraries
|
2 |
+
# from fastapi import FastAPI, HTTPException
|
3 |
+
# from pydantic import BaseModel
|
4 |
+
# import gspread
|
5 |
+
# from google.oauth2.service_account import Credentials
|
6 |
+
# import pandas as pd
|
7 |
+
# from collections import defaultdict
|
8 |
+
# import os
|
9 |
+
|
10 |
+
# # Initialize the FastAPI app
|
11 |
+
# app = FastAPI()
|
12 |
+
|
13 |
+
# # Step 1: Define a function to get Google Sheets API credentials
|
14 |
+
# def get_credentials():
|
15 |
+
# """Get Google Sheets API credentials from environment variables."""
|
16 |
+
# try:
|
17 |
+
# # Construct the service account info dictionary
|
18 |
+
# service_account_info = {
|
19 |
+
# "type": os.getenv("SERVICE_ACCOUNT_TYPE"),
|
20 |
+
# "project_id": os.getenv("PROJECT_ID"),
|
21 |
+
# "private_key_id": os.getenv("PRIVATE_KEY_ID"),
|
22 |
+
# "private_key": os.getenv("PRIVATE_KEY").replace('\\n', '\n'),
|
23 |
+
# "client_email": os.getenv("CLIENT_EMAIL"),
|
24 |
+
# "client_id": os.getenv("CLIENT_ID"),
|
25 |
+
# "auth_uri": os.getenv("AUTH_URI"),
|
26 |
+
# "token_uri": os.getenv("TOKEN_URI"),
|
27 |
+
# "auth_provider_x509_cert_url": os.getenv("AUTH_PROVIDER_X509_CERT_URL"),
|
28 |
+
# "client_x509_cert_url": os.getenv("CLIENT_X509_CERT_URL"),
|
29 |
+
# "universe_domain": os.getenv("UNIVERSE_DOMAIN")
|
30 |
+
# }
|
31 |
+
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
32 |
+
# creds = Credentials.from_service_account_info(service_account_info, scopes=scope)
|
33 |
+
# return creds
|
34 |
+
|
35 |
+
# except Exception as e:
|
36 |
+
# print(f"Error getting credentials: {e}")
|
37 |
+
# return None
|
38 |
+
|
39 |
+
# # Step 2: Authorize gspread using the credentials
|
40 |
+
# creds = get_credentials()
|
41 |
+
# client = gspread.authorize(creds)
|
42 |
+
|
43 |
+
# # Input the paths and coaching code
|
44 |
+
# journal_file_path = ''
|
45 |
+
# panic_button_file_path = ''
|
46 |
+
# test_file_path = ''
|
47 |
+
# coachingCode = '1919'
|
48 |
+
|
49 |
+
# if coachingCode == '1919':
|
50 |
+
# journal_file_path = 'https://docs.google.com/spreadsheets/d/1EFf2lr4A10nt4RhIqxCD_fxe-l3sXH09II0TEkMmvhA/edit?usp=drive_link'
|
51 |
+
# panic_button_file_path = 'https://docs.google.com/spreadsheets/d/1nFZGkCvRV6qS-mhsORhX3dxI0JSge32_UwWgWKl3eyw/edit?usp=drive_link'
|
52 |
+
# test_file_path = 'https://docs.google.com/spreadsheets/d/13PUHySUXWtKBusjugoe7Dbsm39PwBUfG4tGLipspIx4/edit?usp=drive_link'
|
53 |
+
|
54 |
+
# # Step 3: Open Google Sheets using the URLs
|
55 |
+
# journal_file = client.open_by_url(journal_file_path).worksheet('Sheet1')
|
56 |
+
# panic_button_file = client.open_by_url(panic_button_file_path).worksheet('Sheet1') # Fixed missing part
|
57 |
+
# test_file = client.open_by_url(test_file_path).worksheet('Sheet1')
|
58 |
+
|
59 |
+
# # Step 4: Convert the sheets into Pandas DataFrames
|
60 |
+
# journal_df = pd.DataFrame(journal_file.get_all_values())
|
61 |
+
# panic_button_df = pd.DataFrame(panic_button_file.get_all_values())
|
62 |
+
# test_df = pd.DataFrame(test_file.get_all_values())
|
63 |
+
|
64 |
+
# # Label the columns manually since there are no headers
|
65 |
+
# journal_df.columns = ['user_id', 'productivity_yes_no', 'productivity_rate']
|
66 |
+
# panic_button_df.columns = ['user_id', 'panic_button']
|
67 |
+
|
68 |
+
# # Initialize a list for the merged data
|
69 |
+
# merged_data = []
|
70 |
+
|
71 |
+
# # Step 5: Group panic buttons by user_id and combine into a single comma-separated string
|
72 |
+
# panic_button_grouped = panic_button_df.groupby('user_id')['panic_button'].apply(lambda x: ','.join(x)).reset_index()
|
73 |
+
|
74 |
+
# # Merge journal and panic button data
|
75 |
+
# merged_journal_panic = pd.merge(journal_df, panic_button_grouped, on='user_id', how='outer')
|
76 |
+
|
77 |
+
# # Step 6: Process the test data
|
78 |
+
# test_data = []
|
79 |
+
# for index, row in test_df.iterrows():
|
80 |
+
# user_id = row[0]
|
81 |
+
# i = 1
|
82 |
+
# while i < len(row) and pd.notna(row[i]): # Process chapter and score pairs
|
83 |
+
# chapter = row[i].lower().strip()
|
84 |
+
# score = row[i + 1]
|
85 |
+
# if pd.notna(score):
|
86 |
+
# test_data.append({'user_id': user_id, 'test_chapter': chapter, 'test_score': score})
|
87 |
+
# i += 2
|
88 |
+
|
89 |
+
# # Convert the processed test data into a DataFrame
|
90 |
+
# test_df_processed = pd.DataFrame(test_data)
|
91 |
+
|
92 |
+
# # Step 7: Merge the journal+panic button data with the test data
|
93 |
+
# merged_data = pd.merge(merged_journal_panic, test_df_processed, on='user_id', how='outer')
|
94 |
+
|
95 |
+
# # Step 8: Drop rows where all data (except user_id and test_chapter) is missing
|
96 |
+
# merged_data_cleaned = merged_data.dropna(subset=['productivity_yes_no', 'productivity_rate', 'panic_button', 'test_chapter'], how='all')
|
97 |
+
|
98 |
+
# # Group the merged DataFrame by user_id
|
99 |
+
# df = pd.DataFrame(merged_data_cleaned)
|
100 |
+
|
101 |
+
# # Function to process panic button counts and test scores
|
102 |
+
# def process_group(group):
|
103 |
+
# # Panic button counts
|
104 |
+
# panic_button_series = group['panic_button'].dropna()
|
105 |
+
# panic_button_dict = panic_button_series.value_counts().to_dict()
|
106 |
+
|
107 |
+
# # Test scores aggregation
|
108 |
+
# test_scores = group[['test_chapter', 'test_score']].dropna()
|
109 |
+
# test_scores['test_score'] = pd.to_numeric(test_scores['test_score'], errors='coerce')
|
110 |
+
|
111 |
+
# # Create the test_scores_dict excluding NaN values
|
112 |
+
# test_scores_dict = test_scores.groupby('test_chapter')['test_score'].mean().dropna().to_dict()
|
113 |
+
|
114 |
+
# return pd.Series({
|
115 |
+
# 'productivity_yes_no': group['productivity_yes_no'].iloc[0],
|
116 |
+
# 'productivity_rate': group['productivity_rate'].iloc[0],
|
117 |
+
# 'panic_button': panic_button_dict,
|
118 |
+
# 'test_scores': test_scores_dict
|
119 |
+
# })
|
120 |
+
|
121 |
+
# # Apply the group processing function
|
122 |
+
# merged_df = df.groupby('user_id').apply(process_group).reset_index()
|
123 |
+
|
124 |
+
# # Step 9: Calculate potential score
|
125 |
+
# # Panic button weightages
|
126 |
+
# academic_weights = {'BACKLOGS': -5, 'MISSED CLASSES': -4, 'NOT UNDERSTANDING': -3, 'BAD MARKS': -3, 'LACK OF MOTIVATION': -3}
|
127 |
+
# non_academic_weights = {'EMOTIONAL FACTORS': -3, 'PROCRASTINATE': -2, 'LOST INTEREST': -4, 'LACK OF FOCUS': -2, 'GOALS NOT ACHIEVED': -2, 'LACK OF DISCIPLINE': -2}
|
128 |
+
|
129 |
+
# # Max weighted panic score
|
130 |
+
# max_weighted_panic_score = sum([max(academic_weights.values()) * 3, max(non_academic_weights.values()) * 3])
|
131 |
+
|
132 |
+
# # Function to calculate potential score
|
133 |
+
# def calculate_potential_score(row):
|
134 |
+
# # Test score normalization (70% weightage)
|
135 |
+
# if row['test_scores']: # Check if test_scores is not empty
|
136 |
+
# avg_test_score = sum(row['test_scores'].values()) / len(row['test_scores'])
|
137 |
+
# test_score_normalized = (avg_test_score / 40) * 70 # Scale test score to 70
|
138 |
+
# else:
|
139 |
+
# test_score_normalized = 0 # Default value for users with no test scores
|
140 |
+
|
141 |
+
# # Panic score calculation (20% weightage)
|
142 |
+
# student_panic_score = 0
|
143 |
+
# if row['panic_button']: # Ensure panic_button is not NaN or empty
|
144 |
+
# for factor, count in row['panic_button'].items():
|
145 |
+
# if factor in academic_weights:
|
146 |
+
# student_panic_score += academic_weights[factor] * count
|
147 |
+
# elif factor in non_academic_weights:
|
148 |
+
# student_panic_score += non_academic_weights[factor] * count
|
149 |
+
# else:
|
150 |
+
# student_panic_score = 0 # Default if no panic button issues
|
151 |
+
|
152 |
+
# # Panic score normalized to 20
|
153 |
+
# panic_score = 20 * (1 - (student_panic_score / max_weighted_panic_score) if max_weighted_panic_score != 0 else 1)
|
154 |
+
|
155 |
+
# # Journal score calculation (10% weightage)
|
156 |
+
# if pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'Yes':
|
157 |
+
# if pd.notna(row['productivity_rate']):
|
158 |
+
# journal_score = (float(row['productivity_rate']) / 10) * 10 # Scale journal score to 10
|
159 |
+
# else:
|
160 |
+
# journal_score = 0 # Default if productivity_rate is missing
|
161 |
+
# elif pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'No':
|
162 |
+
# if pd.notna(row['productivity_rate']):
|
163 |
+
# journal_score = (float(row['productivity_rate']) / 10) * 5 # Scale journal score to 5 if "No"
|
164 |
+
# else:
|
165 |
+
# journal_score = 0 # Default if productivity_rate is missing
|
166 |
+
# else:
|
167 |
+
# journal_score = 0 # Default if productivity_yes_no is missing
|
168 |
+
|
169 |
+
# # Total score based on new weightages
|
170 |
+
# total_potential_score = test_score_normalized + panic_score + journal_score
|
171 |
+
# return total_potential_score
|
172 |
+
|
173 |
+
# # Apply potential score calculation to the dataframe
|
174 |
+
# merged_df['potential_score'] = merged_df.apply(calculate_potential_score, axis=1)
|
175 |
+
# merged_df['potential_score'] = merged_df['potential_score'].round(2)
|
176 |
+
|
177 |
+
# # Step 10: Sort by potential score
|
178 |
+
# sorted_df = merged_df[['user_id', 'potential_score']].sort_values(by='potential_score', ascending=False)
|
179 |
+
|
180 |
+
# # Step 11: Define API endpoint to get the sorted potential scores
|
181 |
+
# @app.get("/sorted-potential-scores")
|
182 |
+
# async def get_sorted_potential_scores():
|
183 |
+
# try:
|
184 |
+
# result = sorted_df.to_dict(orient="records")
|
185 |
+
# return {"sorted_scores": result}
|
186 |
+
# except Exception as e:
|
187 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
188 |
+
|
189 |
+
|
190 |
+
# Import necessary libraries
|
191 |
+
# from fastapi import FastAPI, HTTPException, Query
|
192 |
+
# from pydantic import BaseModel
|
193 |
+
# import gspread
|
194 |
+
# from google.oauth2.service_account import Credentials
|
195 |
+
# import pandas as pd
|
196 |
+
# from collections import defaultdict
|
197 |
+
# import os
|
198 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
199 |
+
# # Initialize the FastAPI app
|
200 |
+
# app = FastAPI()
|
201 |
+
# app.add_middleware(
|
202 |
+
# CORSMiddleware,
|
203 |
+
# allow_origins=["*"], # You can specify domains instead of "*" to restrict access
|
204 |
+
# allow_credentials=True,
|
205 |
+
# allow_methods=["*"], # Allows all HTTP methods (POST, GET, OPTIONS, etc.)
|
206 |
+
# allow_headers=["*"], # Allows all headers
|
207 |
+
# )
|
208 |
+
# # Step 1: Define a function to get Google Sheets API credentials
|
209 |
+
# def get_credentials():
|
210 |
+
# """Get Google Sheets API credentials from environment variables."""
|
211 |
+
# try:
|
212 |
+
# # Construct the service account info dictionary
|
213 |
+
# service_account_info = {
|
214 |
+
# "type": os.getenv("SERVICE_ACCOUNT_TYPE"),
|
215 |
+
# "project_id": os.getenv("PROJECT_ID"),
|
216 |
+
# "private_key_id": os.getenv("PRIVATE_KEY_ID"),
|
217 |
+
# "private_key": os.getenv("PRIVATE_KEY").replace('\\n', '\n'),
|
218 |
+
# "client_email": os.getenv("CLIENT_EMAIL"),
|
219 |
+
# "client_id": os.getenv("CLIENT_ID"),
|
220 |
+
# "auth_uri": os.getenv("AUTH_URI"),
|
221 |
+
# "token_uri": os.getenv("TOKEN_URI"),
|
222 |
+
# "auth_provider_x509_cert_url": os.getenv("AUTH_PROVIDER_X509_CERT_URL"),
|
223 |
+
# "client_x509_cert_url": os.getenv("CLIENT_X509_CERT_URL"),
|
224 |
+
# "universe_domain": os.getenv("UNIVERSE_DOMAIN")
|
225 |
+
# }
|
226 |
+
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
227 |
+
# creds = Credentials.from_service_account_info(service_account_info, scopes=scope)
|
228 |
+
# return creds
|
229 |
+
|
230 |
+
# except Exception as e:
|
231 |
+
# print(f"Error getting credentials: {e}")
|
232 |
+
# return None
|
233 |
+
|
234 |
+
# # Step 2: Authorize gspread using the credentials
|
235 |
+
# creds = get_credentials()
|
236 |
+
# client = gspread.authorize(creds)
|
237 |
+
|
238 |
+
# # Function to get file paths based on coaching code
|
239 |
+
# def get_file_paths(coaching_code):
|
240 |
+
# if coaching_code == '1919':
|
241 |
+
# return {
|
242 |
+
# 'journal': 'https://docs.google.com/spreadsheets/d/1EFf2lr4A10nt4RhIqxCD_fxe-l3sXH09II0TEkMmvhA/edit?usp=drive_link',
|
243 |
+
# 'panic_button': 'https://docs.google.com/spreadsheets/d/1nFZGkCvRV6qS-mhsORhX3dxI0JSge32_UwWgWKl3eyw/edit?usp=drive_link',
|
244 |
+
# 'test': 'https://docs.google.com/spreadsheets/d/13PUHySUXWtKBusjugoe7Dbsm39PwBUfG4tGLipspIx4/edit?usp=drive_link'
|
245 |
+
# }
|
246 |
+
# if coaching_code == '0946':
|
247 |
+
# return {
|
248 |
+
# 'journal': 'https://docs.google.com/spreadsheets/d/1c1TkL7sOUvFn6UPz3gwp135UVjOou9u1weohWzpmx6I/edit?usp=drive_link',
|
249 |
+
# 'panic_button': 'https://docs.google.com/spreadsheets/d/1RhbPQnNNBUthKKJyoW4q6x3uaWl1YSqmsFlfJ2THphE/edit?usp=drive_link',
|
250 |
+
# 'test': 'https://docs.google.com/spreadsheets/d/1JO5wDkfl2fr2ZQenI8OEu48jkWm48veYN1Fsw5Ctkzw/edit?usp=drive_link'
|
251 |
+
# }
|
252 |
+
# # Panic button weightages
|
253 |
+
# academic_weights = {'BACKLOGS': -5, 'MISSED CLASSES': -4, 'NOT UNDERSTANDING': -3, 'BAD MARKS': -3, 'LACK OF MOTIVATION': -3}
|
254 |
+
# non_academic_weights = {'EMOTIONAL FACTORS': -3, 'PROCRASTINATE': -2, 'LOST INTEREST': -4, 'LACK OF FOCUS': -2, 'GOALS NOT ACHIEVED': -2, 'LACK OF DISCIPLINE': -2}
|
255 |
+
|
256 |
+
# # Max weighted panic score
|
257 |
+
# max_weighted_panic_score = sum([max(academic_weights.values()) * 3, max(non_academic_weights.values()) * 3])
|
258 |
+
|
259 |
+
# # Function to calculate potential score
|
260 |
+
# def calculate_potential_score(row):
|
261 |
+
# # Test score normalization (70% weightage)
|
262 |
+
# if row['test_scores']: # Check if test_scores is not empty
|
263 |
+
# avg_test_score = sum(row['test_scores'].values()) / len(row['test_scores'])
|
264 |
+
# test_score_normalized = (avg_test_score / 40) * 70 # Scale test score to 70
|
265 |
+
# else:
|
266 |
+
# test_score_normalized = 0 # Default value for users with no test scores
|
267 |
+
|
268 |
+
# # Panic score calculation (20% weightage)
|
269 |
+
# student_panic_score = 0
|
270 |
+
# if row['panic_button']: # Ensure panic_button is not NaN or empty
|
271 |
+
# for factor, count in row['panic_button'].items():
|
272 |
+
# if factor in academic_weights:
|
273 |
+
# student_panic_score += academic_weights[factor] * count
|
274 |
+
# elif factor in non_academic_weights:
|
275 |
+
# student_panic_score += non_academic_weights[factor] * count
|
276 |
+
# else:
|
277 |
+
# student_panic_score = 0 # Default if no panic button issues
|
278 |
+
|
279 |
+
# # Panic score normalized to 20
|
280 |
+
# panic_score = 20 * (1 - (student_panic_score / max_weighted_panic_score) if max_weighted_panic_score != 0 else 1)
|
281 |
+
|
282 |
+
# # Journal score calculation (10% weightage)
|
283 |
+
# if pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'Yes':
|
284 |
+
# if pd.notna(row['productivity_rate']):
|
285 |
+
# journal_score = (float(row['productivity_rate']) / 10) * 10 # Scale journal score to 10
|
286 |
+
# else:
|
287 |
+
# journal_score = 0 # Default if productivity_rate is missing
|
288 |
+
# elif pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'No':
|
289 |
+
# if pd.notna(row['productivity_rate']):
|
290 |
+
# journal_score = (float(row['productivity_rate']) / 10) * 5 # Scale journal score to 5 if "No"
|
291 |
+
# else:
|
292 |
+
# journal_score = 0 # Default if productivity_rate is missing
|
293 |
+
# else:
|
294 |
+
# journal_score = 0 # Default if productivity_yes_no is missing
|
295 |
+
|
296 |
+
# # Total score based on new weightages
|
297 |
+
# total_potential_score = test_score_normalized + panic_score + journal_score
|
298 |
+
# return total_potential_score
|
299 |
+
|
300 |
+
# # Step 11: Define API endpoint to get the sorted potential scores
|
301 |
+
# @app.get("/sorted-potential-scores")
|
302 |
+
# async def get_sorted_potential_scores(coaching_code: str = Query(..., description="Coaching code to determine file paths")):
|
303 |
+
# try:
|
304 |
+
# file_paths = get_file_paths(coaching_code)
|
305 |
+
# if not file_paths:
|
306 |
+
# raise HTTPException(status_code=400, detail="Invalid coaching code")
|
307 |
+
# print("A");
|
308 |
+
# # Open Google Sheets using the URLs
|
309 |
+
# journal_file = client.open_by_url(file_paths['journal']).worksheet('Sheet1')
|
310 |
+
# panic_button_file = client.open_by_url(file_paths['panic_button']).worksheet('Sheet1')
|
311 |
+
# test_file = client.open_by_url(file_paths['test']).worksheet('Sheet1')
|
312 |
+
# print("B");
|
313 |
+
# # Convert the sheets into Pandas DataFrames
|
314 |
+
# journal_df = pd.DataFrame(journal_file.get_all_values())
|
315 |
+
# panic_button_df = pd.DataFrame(panic_button_file.get_all_values())
|
316 |
+
# test_df = pd.DataFrame(test_file.get_all_values())
|
317 |
+
# print("C");
|
318 |
+
# # Label the columns manually since there are no headers
|
319 |
+
# journal_df.columns = ['user_id', 'productivity_yes_no', 'productivity_rate']
|
320 |
+
# panic_button_df.columns = ['user_id', 'panic_button']
|
321 |
+
# print("D")
|
322 |
+
# # Initialize a list for the merged data
|
323 |
+
# merged_data = []
|
324 |
+
|
325 |
+
# # Group panic buttons by user_id and combine into a single comma-separated string
|
326 |
+
# panic_button_grouped = panic_button_df.groupby('user_id')['panic_button'].apply(lambda x: ','.join(x)).reset_index()
|
327 |
+
# print("E")
|
328 |
+
# # Merge journal and panic button data
|
329 |
+
# merged_journal_panic = pd.merge(journal_df, panic_button_grouped, on='user_id', how='outer')
|
330 |
+
# print("F")
|
331 |
+
# # Process the test data
|
332 |
+
# test_data = []
|
333 |
+
# for index, row in test_df.iterrows():
|
334 |
+
# user_id = row[0]
|
335 |
+
# i = 1
|
336 |
+
# while i < len(row) and pd.notna(row[i]): # Process chapter and score pairs
|
337 |
+
# chapter = row[i].lower().strip()
|
338 |
+
# score = row[i + 1]
|
339 |
+
# if pd.notna(score):
|
340 |
+
# test_data.append({'user_id': user_id, 'test_chapter': chapter, 'test_score': score})
|
341 |
+
# i += 2
|
342 |
+
# print("G")
|
343 |
+
# # Convert the processed test data into a DataFrame
|
344 |
+
# test_df_processed = pd.DataFrame(test_data)
|
345 |
+
# print("H")
|
346 |
+
# # Merge the journal+panic button data with the test data
|
347 |
+
# merged_data = pd.merge(merged_journal_panic, test_df_processed, on='user_id', how='outer')
|
348 |
+
# print("I")
|
349 |
+
# # Drop rows where all data (except user_id and test_chapter) is missing
|
350 |
+
# merged_data_cleaned = merged_data.dropna(subset=['productivity_yes_no', 'productivity_rate', 'panic_button', 'test_chapter'], how='all')
|
351 |
+
# print("J")
|
352 |
+
# # Group the merged DataFrame by user_id
|
353 |
+
# df = pd.DataFrame(merged_data_cleaned)
|
354 |
+
# print("K")
|
355 |
+
# # Function to process panic button counts and test scores
|
356 |
+
# def process_group(group):
|
357 |
+
# # Panic button counts
|
358 |
+
# panic_button_series = group['panic_button'].dropna()
|
359 |
+
# panic_button_dict = panic_button_series.value_counts().to_dict()
|
360 |
+
|
361 |
+
# # Test scores aggregation
|
362 |
+
# test_scores = group[['test_chapter', 'test_score']].dropna()
|
363 |
+
# test_scores['test_score'] = pd.to_numeric(test_scores['test_score'], errors='coerce')
|
364 |
+
|
365 |
+
# # Create the test_scores_dict excluding NaN values
|
366 |
+
# test_scores_dict = test_scores.groupby('test_chapter')['test_score'].mean().dropna().to_dict()
|
367 |
+
|
368 |
+
# return pd.Series({
|
369 |
+
# 'productivity_yes_no': group['productivity_yes_no'].iloc[0],
|
370 |
+
# 'productivity_rate': group['productivity_rate'].iloc[0],
|
371 |
+
# 'panic_button': panic_button_dict,
|
372 |
+
# 'test_scores': test_scores_dict
|
373 |
+
# })
|
374 |
+
|
375 |
+
# # Apply the group processing function
|
376 |
+
# merged_df = df.groupby('user_id').apply(process_group).reset_index()
|
377 |
+
# print("L")
|
378 |
+
# # Calculate potential scores and sort
|
379 |
+
# merged_df['potential_score'] = merged_df.apply(calculate_potential_score, axis=1)
|
380 |
+
# merged_df['potential_score'] = merged_df['potential_score'].round(2)
|
381 |
+
# sorted_df = merged_df[['user_id', 'potential_score']].sort_values(by='potential_score', ascending=False)
|
382 |
+
# print("M")
|
383 |
+
# result = sorted_df.to_dict(orient="records")
|
384 |
+
# return {"sorted_scores": result}
|
385 |
+
# except Exception as e:
|
386 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
from fastapi import FastAPI, HTTPException, Query
|
392 |
+
from pydantic import BaseModel
|
393 |
+
import gspread
|
394 |
+
from google.oauth2.service_account import Credentials
|
395 |
+
import pandas as pd
|
396 |
+
from collections import defaultdict
|
397 |
+
import os
|
398 |
+
from fastapi.middleware.cors import CORSMiddleware
|
399 |
+
app = FastAPI()
|
400 |
+
app.add_middleware(
|
401 |
+
CORSMiddleware,
|
402 |
+
allow_origins=["*"], # You can specify domains instead of "*" to restrict access
|
403 |
+
allow_credentials=True,
|
404 |
+
allow_methods=["*"], # Allows all HTTP methods (POST, GET, OPTIONS, etc.)
|
405 |
+
allow_headers=["*"], # Allows all headers
|
406 |
+
)
|
407 |
+
|
408 |
+
# Model for request
|
409 |
+
class CoachingCodeRequest(BaseModel):
|
410 |
+
coachingCode: str
|
411 |
+
|
412 |
+
# Function to get credentials
|
413 |
+
def get_credentials():
|
414 |
+
"""Get Google Sheets API credentials from environment variables."""
|
415 |
+
try:
|
416 |
+
# Construct the service account info dictionary
|
417 |
+
service_account_info = {
|
418 |
+
"type": os.getenv("SERVICE_ACCOUNT_TYPE"),
|
419 |
+
"project_id": os.getenv("PROJECT_ID"),
|
420 |
+
"private_key_id": os.getenv("PRIVATE_KEY_ID"),
|
421 |
+
"private_key": os.getenv("PRIVATE_KEY").replace('\\n', '\n'),
|
422 |
+
"client_email": os.getenv("CLIENT_EMAIL"),
|
423 |
+
"client_id": os.getenv("CLIENT_ID"),
|
424 |
+
"auth_uri": os.getenv("AUTH_URI"),
|
425 |
+
"token_uri": os.getenv("TOKEN_URI"),
|
426 |
+
"auth_provider_x509_cert_url": os.getenv("AUTH_PROVIDER_X509_CERT_URL"),
|
427 |
+
"client_x509_cert_url": os.getenv("CLIENT_X509_CERT_URL"),
|
428 |
+
"universe_domain": os.getenv("UNIVERSE_DOMAIN")
|
429 |
+
}
|
430 |
+
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
|
431 |
+
creds = Credentials.from_service_account_info(service_account_info, scopes=scope)
|
432 |
+
return creds
|
433 |
+
|
434 |
+
except Exception as e:
|
435 |
+
print(f"Error getting credentials: {e}")
|
436 |
+
return None
|
437 |
+
|
438 |
+
|
439 |
+
# Select files based on coaching code
|
440 |
+
def select_files(coaching_code):
|
441 |
+
creds = get_credentials()
|
442 |
+
client = gspread.authorize(creds)
|
443 |
+
|
444 |
+
if coaching_code == "1919":
|
445 |
+
journal_file = client.open_by_url('https://docs.google.com/spreadsheets/d/1EFf2lr4A10nt4RhIqxCD_fxe-l3sXH09II0TEkMmvhA/edit?gid=0#gid=0').worksheet('Sheet1')
|
446 |
+
panic_button_file = client.open_by_url('https://docs.google.com/spreadsheets/d/1nFZGkCvRV6qS-mhsORhX3dxI0JSge32_UwWgWKl3eyw/edit?gid=0#gid=0').worksheet('Sheet1')
|
447 |
+
test_file = client.open_by_url('https://docs.google.com/spreadsheets/d/13PUHySUXWtKBusjugoe7Dbsm39PwBUfG4tGLipspIx4/edit?gid=0#gid=0').worksheet('Sheet1')
|
448 |
+
else:
|
449 |
+
raise HTTPException(status_code=404, detail="Invalid coaching code")
|
450 |
+
|
451 |
+
return journal_file, panic_button_file, test_file
|
452 |
+
|
453 |
+
# Main route to get sorted scores
|
454 |
+
@app.post("/get_sorted_scores")
|
455 |
+
async def get_sorted_scores(data: CoachingCodeRequest):
|
456 |
+
journal_file, panic_button_file, test_file = select_files(data.coachingCode)
|
457 |
+
|
458 |
+
# Load data into DataFrames
|
459 |
+
journal_df = pd.DataFrame(journal_file.get_all_values())
|
460 |
+
panic_button_df = pd.DataFrame(panic_button_file.get_all_values())
|
461 |
+
test_df = pd.DataFrame(test_file.get_all_values())
|
462 |
+
|
463 |
+
# Processing logic
|
464 |
+
panic_data = []
|
465 |
+
for index, row in panic_button_df.iterrows():
|
466 |
+
user_id = row[0]
|
467 |
+
row_pairs = row[1:].dropna().to_list()[-5:]
|
468 |
+
for i in range(0, len(row_pairs), 2):
|
469 |
+
panic = row_pairs[i].upper().strip()
|
470 |
+
if pd.notna(panic):
|
471 |
+
panic_data.append({'user_id': user_id, 'panic_button': panic})
|
472 |
+
panic_df_processed = pd.DataFrame(panic_data)
|
473 |
+
|
474 |
+
test_data = []
|
475 |
+
for index, row in test_df.iterrows():
|
476 |
+
user_id = row[0]
|
477 |
+
row_pairs = row[1:].dropna().to_list()
|
478 |
+
chapter_scores = {}
|
479 |
+
for i in range(0, len(row_pairs), 2):
|
480 |
+
chapter = row_pairs[i].lower().strip()
|
481 |
+
score = row_pairs[i + 1]
|
482 |
+
if pd.notna(score):
|
483 |
+
if chapter not in chapter_scores:
|
484 |
+
chapter_scores[chapter] = []
|
485 |
+
chapter_scores[chapter].append(score)
|
486 |
+
for chapter, scores in chapter_scores.items():
|
487 |
+
last_5_scores = scores[-5:]
|
488 |
+
for score in last_5_scores:
|
489 |
+
test_data.append({'user_id': user_id, 'test_chapter': chapter, 'test_score': score})
|
490 |
+
test_df_processed = pd.DataFrame(test_data)
|
491 |
+
|
492 |
+
journal_data = []
|
493 |
+
for index, row in journal_df.iterrows():
|
494 |
+
user_id = row[0]
|
495 |
+
row_pairs = row[1:].dropna().to_list()[-10:]
|
496 |
+
for i in range(0, len(row_pairs), 2):
|
497 |
+
productivity_yes_no = row_pairs[i].lower().strip()
|
498 |
+
productivity_rate = row_pairs[i + 1]
|
499 |
+
if pd.notna(productivity_rate):
|
500 |
+
journal_data.append({'user_id': user_id, 'productivity_yes_no': productivity_yes_no, 'productivity_rate': productivity_rate})
|
501 |
+
journal_df_processed = pd.DataFrame(journal_data)
|
502 |
+
|
503 |
+
merged_journal_panic = pd.merge(panic_df_processed, journal_df_processed, on='user_id', how='outer')
|
504 |
+
merged_data = pd.merge(merged_journal_panic, test_df_processed, on='user_id', how='outer')
|
505 |
+
merged_data_cleaned = merged_data.dropna(subset=['productivity_yes_no', 'productivity_rate', 'panic_button', 'test_chapter'], how='all')
|
506 |
+
|
507 |
+
def process_group(group):
|
508 |
+
# Panic button counts
|
509 |
+
panic_button_series = group['panic_button'].dropna()
|
510 |
+
panic_button_dict = panic_button_series.value_counts().to_dict()
|
511 |
+
|
512 |
+
# Test scores aggregation
|
513 |
+
test_scores = group[['test_chapter', 'test_score']].dropna()
|
514 |
+
test_scores['test_score'] = pd.to_numeric(test_scores['test_score'], errors='coerce')
|
515 |
+
|
516 |
+
# Create the test_scores_dict excluding NaN values
|
517 |
+
test_scores_dict = test_scores.groupby('test_chapter')['test_score'].mean().dropna().to_dict()
|
518 |
+
|
519 |
+
return pd.Series({
|
520 |
+
'productivity_yes_no': group['productivity_yes_no'].iloc[0],
|
521 |
+
'productivity_rate': group['productivity_rate'].iloc[0],
|
522 |
+
'panic_button': panic_button_dict,
|
523 |
+
'test_scores': test_scores_dict
|
524 |
+
})
|
525 |
+
|
526 |
+
# Define scoring weights
|
527 |
+
academic_weights = {'BACKLOGS': -5, 'MISSED CLASSES': -4, 'NOT UNDERSTANDING': -3, 'BAD MARKS': -3, 'LACK OF MOTIVATION': -3}
|
528 |
+
non_academic_weights = {'EMOTIONAL FACTORS': -3, 'PROCRASTINATE': -2, 'LOST INTEREST': -4, 'LACK OF FOCUS': -2, 'GOALS NOT ACHIEVED': -2, 'LACK OF DISCIPLINE': -2}
|
529 |
+
max_weighted_panic_score = sum([max(academic_weights.values()) * 3, max(non_academic_weights.values()) * 3])
|
530 |
+
|
531 |
+
def calculate_potential_score(row):
|
532 |
+
if row['test_scores']:
|
533 |
+
avg_test_score = sum(row['test_scores'].values()) / len(row['test_scores'])
|
534 |
+
test_score_normalized = (avg_test_score / 40) * 70
|
535 |
+
else:
|
536 |
+
test_score_normalized = 0
|
537 |
+
student_panic_score = 0
|
538 |
+
if row['panic_button']:
|
539 |
+
for factor, count in row['panic_button'].items():
|
540 |
+
if factor in academic_weights:
|
541 |
+
student_panic_score += academic_weights[factor] * count
|
542 |
+
elif factor in non_academic_weights:
|
543 |
+
student_panic_score += non_academic_weights[factor] * count
|
544 |
+
else:
|
545 |
+
student_panic_score = 0
|
546 |
+
panic_score = 20 * (1 - (student_panic_score / max_weighted_panic_score) if max_weighted_panic_score != 0 else 1)
|
547 |
+
if pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'Yes':
|
548 |
+
if pd.notna(row['productivity_rate']):
|
549 |
+
journal_score = (float(row['productivity_rate']) / 10) * 10
|
550 |
+
else:
|
551 |
+
journal_score = 0
|
552 |
+
elif pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'No':
|
553 |
+
if pd.notna(row['productivity_rate']):
|
554 |
+
journal_score = (float(row['productivity_rate']) / 10) * 5
|
555 |
+
else:
|
556 |
+
journal_score = 0
|
557 |
+
else:
|
558 |
+
journal_score = 0
|
559 |
+
total_potential_score = test_score_normalized + panic_score + journal_score
|
560 |
+
return total_potential_score
|
561 |
+
|
562 |
+
merged_df = merged_data_cleaned.groupby('user_id').apply(process_group).reset_index()
|
563 |
+
merged_df['potential_score'] = merged_df.apply(calculate_potential_score, axis=1)
|
564 |
+
merged_df['potential_score'] = merged_df['potential_score'].round(2)
|
565 |
+
sorted_df = merged_df[['user_id', 'potential_score']].sort_values(by='potential_score', ascending=False)
|
566 |
+
result = sorted_df.to_dict(orient="records")
|
567 |
+
|
568 |
+
return {"sorted_scores": result}
|
569 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
pandas
|
4 |
+
gspread
|
5 |
+
google-auth
|