Spaces:
Sleeping
Sleeping
File size: 12,212 Bytes
63ecb0d d23f574 cf5f1c9 32b8dd4 fe8b7a1 32b8dd4 ff51822 ae0ed1b 1e2d254 fe8b7a1 144c78b fe8b7a1 08c7492 144c78b fe8b7a1 0d268b7 5ffd3bc 5f10ef2 fe8b7a1 cf5f1c9 fe8b7a1 5f10ef2 fe8b7a1 5a7c441 66791b6 94b92ed cf5f1c9 66791b6 cf5f1c9 e3825f8 fe8b7a1 e3825f8 fe8b7a1 e3825f8 63ecb0d e3825f8 1e2d254 ae0ed1b 7511df3 0d268b7 7511df3 e3825f8 ae0ed1b 147a645 ae0ed1b cf5f1c9 ce7a58b fe8b7a1 144c78b fe8b7a1 5ffd3bc fe8b7a1 44646a0 fe8b7a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import openai
from pytube import YouTube
import argparse
import os
from tqdm import tqdm
from SRT import SRT_script
import stable_whisper
import whisper
from srt2ass import srt2ass
import subprocess
import time
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
parser.add_argument("--video_file", help="local video path here", default=None, type=str, required=False)
parser.add_argument("--audio_file", help="local audio path here", default=None, type=str, required=False)
parser.add_argument("--srt_file", help="srt file input path here", default=None, type=str, required=False) # New argument
parser.add_argument("--download", help="download path", default='./downloads', type=str, required=False)
parser.add_argument("--output_dir", help="translate result path", default='./results', type=str, required=False)
parser.add_argument("--video_name", help="video name, if use video link as input, the name will auto-filled by youtube video name", default='placeholder', type=str, required=False)
parser.add_argument("--model_name", help="model name only support gpt-4 and gpt-3.5-turbo", type=str, required=False, default="gpt-4") # default change to gpt-4
parser.add_argument("-only_srt", help="set script output to only .srt file", action='store_true')
parser.add_argument("-v", help="auto encode script with video", action='store_true')
args = parser.parse_args()
return args
def get_sources(args, download_path, result_path, video_name):
# get source audio
if args.link is not None and args.video_file is None:
# Download audio from YouTube
video_link = args.link
video = None
audio = None
try:
yt = YouTube(video_link)
video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if video:
video.download(f'{download_path}/video')
print('Video download completed!')
else:
print("Error: Video stream not found")
audio = yt.streams.filter(only_audio=True, file_extension='mp4').first()
if audio:
audio.download(f'{download_path}/audio')
print('Audio download completed!')
else:
print("Error: Audio stream not found")
except Exception as e:
print("Connection Error")
print(e)
exit()
video_path = f'{download_path}/video/{video.default_filename}'
audio_path = '{}/audio/{}'.format(download_path, audio.default_filename)
audio_file = open(audio_path, "rb")
if video_name == 'placeholder':
video_name = audio.default_filename.split('.')[0]
elif args.video_file is not None:
# Read from local
video_path = args.video_file
if args.audio_file is not None:
audio_file= open(args.audio_file, "rb")
audio_path = args.audio_file
else:
output_audio_path = f'{download_path}/audio/{video_name}.mp3'
subprocess.run(['ffmpeg', '-i', video_path, '-f', 'mp3', '-ab', '192000', '-vn', output_audio_path])
audio_file = open(output_audio_path, "rb")
audio_path = output_audio_path
if not os.path.exists(f'{result_path}/{video_name}'):
os.mkdir(f'{result_path}/{video_name}')
if args.audio_file is not None:
audio_file= open(args.audio_file, "rb")
audio_path = args.audio_file
pass
return audio_path, audio_file, video_path, video_name
def get_srt_class(srt_file_en, result_path, video_name, audio_path, audio_file = None, whisper_model = 'base', method = "stable"):
# Instead of using the script_en variable directly, we'll use script_input
if srt_file_en is not None:
srt = SRT_script.parse_from_srt_file(srt_file_en)
else:
# using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
srt_file_en = "{}/{}/{}_en.srt".format(result_path, video_name, video_name)
if not os.path.exists(srt_file_en):
# use OpenAI API for transcribe
if method == "api":
transcript = openai.Audio.transcribe("whisper-1", audio_file)
# use local whisper model
elif method == "basic":
model = whisper.load_model(whisper_model) # using base model in local machine (may use large model on our server)
transcript = model.transcribe(audio_path)
# use stable-whisper
elif method == "stable":
model = stable_whisper.load_model(whisper_model)
transcript = model.transcribe(audio_path, regroup = False, initial_prompt="Hello, welcome to my lecture. Are you good my friend?")
(
transcript
.split_by_punctuation(['.', '。', '?'])
.merge_by_gap(.15, max_words=3)
.merge_by_punctuation([' '])
.split_by_punctuation(['.', '。', '?'])
)
transcript = transcript.to_dict()
else:
raise ValueError("invalid speech to text method")
srt = SRT_script(transcript['segments']) # read segments to SRT class
else:
srt = SRT_script.parse_from_srt_file(srt_file_en)
return srt_file_en, srt
# Split the video script by sentences and create chunks within the token limit
def script_split(script_in, chunk_size = 1000):
script_split = script_in.split('\n\n')
script_arr = []
range_arr = []
start = 1
end = 0
script = ""
for sentence in script_split:
if len(script) + len(sentence) + 1 <= chunk_size:
script += sentence + '\n\n'
end+=1
else:
range_arr.append((start, end))
start = end+1
end += 1
script_arr.append(script.strip())
script = sentence + '\n\n'
if script.strip():
script_arr.append(script.strip())
range_arr.append((start, len(script_split)-1))
assert len(script_arr) == len(range_arr)
return script_arr, range_arr
# check whether previous translation is done
# zh_file = "{}/{}/{}_zh.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
# segidx = 1
# if os.path.exists(zh_file):
# temp_file = "{}/{}/temp.srt".format(RESULT_PATH, VIDEO_NAME)
# if os.path.exists(temp_file):
# os.remove(temp_file)
# with open(zh_file, "r") as f0:
# for count, _ in enumerate(f0):
# pass
# count += 1
# segidx = int(count/4)+1
# en_file = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
# if args.srt_file is not None:
# en_file = args.srt_file
# with open(en_file, "r") as f1, open(temp_file, "a") as f2:
# x = f1.readlines()
# #print(len(x))
# if count >= len(x):
# print('Work already done! Please delete {}_zh.srt files in result directory first in order to rework'.format(VIDEO_NAME))
# exit()
# for i, line in enumerate(x):
# if i >= count:
# f2.write(line)
# srt = SRT_script.parse_from_srt_file(temp_file)
# print('temp_contents')
# print(srt.get_source_only())
def get_response(model_name, sentence):
if model_name == "gpt-3.5-turbo" or model_name == "gpt-4":
response = openai.ChatCompletion.create(
model=model_name,
messages = [
{"role": "system", "content": "You are a helpful assistant that translates English to Chinese and have decent background in starcraft2."},
{"role": "system", "content": "Your translation has to keep the orginal format and be as accurate as possible."},
{"role": "system", "content": "Your translation needs to be consistent with the number of sentences in the original."},
{"role": "system", "content": "There is no need for you to add any comments or notes."},
{"role": "user", "content": 'Translate the following English text to Chinese: "{}"'.format(sentence)}
],
temperature=0.15
)
return response['choices'][0]['message']['content'].strip()
# Translate and save
def translate(srt, script_arr, range_arr, model_name, video_name, video_link):
previous_length = 0
for sentence, range in tqdm(zip(script_arr, range_arr)):
# update the range based on previous length
range = (range[0]+previous_length, range[1]+previous_length)
# using chatgpt model
print(f"now translating sentences {range}")
flag = True
while flag:
flag = False
try:
translate = get_response(model_name, sentence)
except Exception as e:
print("An error has occurred during translation:",e)
print("Retrying... the script will continue after 30 seconds.")
time.sleep(30)
flag = True
srt.set_translation(translate, range, model_name, video_name, video_link)
def main():
args = parse_args()
# input check: input should be either video file or youtube video link.
if args.link is None and args.video_file is None and args.srt_file is None and args.audio_file is None:
print("need video source or srt file")
exit()
# set up
openai.api_key = os.getenv("OPENAI_API_KEY")
DOWNLOAD_PATH = args.download
if not os.path.exists(DOWNLOAD_PATH):
os.mkdir(DOWNLOAD_PATH)
os.mkdir(f'{DOWNLOAD_PATH}/audio')
os.mkdir(f'{DOWNLOAD_PATH}/video')
RESULT_PATH = args.output_dir
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
# set video name as the input file name if not specified
if args.video_name == 'placeholder' :
# set video name to upload file name
if args.video_file is not None:
VIDEO_NAME = args.video_file.split('/')[-1].split('.')[0]
elif args.audio_file is not None:
VIDEO_NAME = args.audio_file.split('/')[-1].split('.')[0]
elif args.srt_file is not None:
VIDEO_NAME = args.srt_file.split('/')[-1].split('.')[0].split("_")[0]
else:
VIDEO_NAME = args.video_name
else:
VIDEO_NAME = args.video_name
audio_path, audio_file, video_path, VIDEO_NAME = get_sources(args, DOWNLOAD_PATH, RESULT_PATH, VIDEO_NAME)
srt_file_en, srt = get_srt_class(args.srt_file, RESULT_PATH, VIDEO_NAME, audio_path, audio_file)
# SRT class preprocess
srt.form_whole_sentence()
srt.spell_check_term()
srt.correct_with_force_term()
srt.write_srt_file_src(srt_file_en)
script_input = srt.get_source_only()
# write ass
if not args.only_srt:
assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
print('ASS subtitle saved as: ' + assSub_en)
script_arr, range_arr = script_split(script_input)
translate(srt, script_arr, range_arr, args.model_name, VIDEO_NAME, args.link)
# SRT post-processing
srt.check_len_and_split()
srt.remove_trans_punctuation()
srt.write_srt_file_translate(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt")
srt.write_srt_file_bilingual(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_bi.srt")
# write ass
if not args.only_srt:
assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
print('ASS subtitle saved as: ' + assSub_zh)
# encode to .mp4 video file
if args.v:
if args.only_srt:
os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')
else:
os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.ass" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')
if __name__ == "__main__":
main() |