File size: 12,212 Bytes
63ecb0d
 
 
 
d23f574
cf5f1c9
 
32b8dd4
fe8b7a1
32b8dd4
ff51822
ae0ed1b
1e2d254
 
fe8b7a1
 
 
 
 
 
 
 
 
 
 
 
 
144c78b
fe8b7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08c7492
144c78b
 
fe8b7a1
0d268b7
5ffd3bc
5f10ef2
fe8b7a1
 
 
cf5f1c9
fe8b7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f10ef2
fe8b7a1
 
 
5a7c441
66791b6
94b92ed
cf5f1c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66791b6
cf5f1c9
 
 
 
 
e3825f8
fe8b7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3825f8
fe8b7a1
 
 
e3825f8
63ecb0d
e3825f8
1e2d254
ae0ed1b
 
 
 
7511df3
0d268b7
7511df3
e3825f8
ae0ed1b
147a645
ae0ed1b
cf5f1c9
ce7a58b
 
 
 
fe8b7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144c78b
fe8b7a1
 
5ffd3bc
fe8b7a1
 
 
 
 
44646a0
fe8b7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import openai
from pytube import YouTube
import argparse
import os
from tqdm import tqdm
from SRT import SRT_script
import stable_whisper
import whisper
from srt2ass import srt2ass

import subprocess

import time

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
    parser.add_argument("--video_file", help="local video path here", default=None, type=str, required=False)
    parser.add_argument("--audio_file", help="local audio path here", default=None, type=str, required=False)
    parser.add_argument("--srt_file", help="srt file input path here", default=None, type=str, required=False)  # New argument
    parser.add_argument("--download", help="download path", default='./downloads', type=str, required=False)
    parser.add_argument("--output_dir", help="translate result path", default='./results', type=str, required=False)
    parser.add_argument("--video_name", help="video name, if use video link as input, the name will auto-filled by youtube video name", default='placeholder', type=str, required=False)
    parser.add_argument("--model_name", help="model name only support gpt-4 and gpt-3.5-turbo", type=str, required=False, default="gpt-4") # default change to gpt-4
    parser.add_argument("-only_srt", help="set script output to only .srt file", action='store_true')
    parser.add_argument("-v", help="auto encode script with video", action='store_true')
    args = parser.parse_args()
    
    return args

def get_sources(args, download_path, result_path, video_name):
    # get source audio
    if args.link is not None and args.video_file is None:
        # Download audio from YouTube
        video_link = args.link
        video = None
        audio = None
        try:
            yt = YouTube(video_link)
            video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
            if video:
                video.download(f'{download_path}/video')
                print('Video download completed!')
            else:
                print("Error: Video stream not found")
            audio = yt.streams.filter(only_audio=True, file_extension='mp4').first()
            if audio:
                audio.download(f'{download_path}/audio')
                print('Audio download completed!')
            else:
                print("Error: Audio stream not found")
        except Exception as e:
            print("Connection Error")
            print(e) 
            exit()
        
        video_path = f'{download_path}/video/{video.default_filename}'
        audio_path = '{}/audio/{}'.format(download_path, audio.default_filename)
        audio_file = open(audio_path, "rb")
        if video_name == 'placeholder':
            video_name = audio.default_filename.split('.')[0]
    elif args.video_file is not None:
        # Read from local
        video_path = args.video_file

        if args.audio_file is not None:
            audio_file= open(args.audio_file, "rb")
            audio_path = args.audio_file
        else:
            output_audio_path = f'{download_path}/audio/{video_name}.mp3'
            subprocess.run(['ffmpeg', '-i', video_path, '-f', 'mp3', '-ab', '192000', '-vn', output_audio_path])
            audio_file = open(output_audio_path, "rb")
            audio_path = output_audio_path

    if not os.path.exists(f'{result_path}/{video_name}'):
        os.mkdir(f'{result_path}/{video_name}')

    if args.audio_file is not None:
        audio_file= open(args.audio_file, "rb")
        audio_path = args.audio_file
        pass

    return audio_path, audio_file, video_path, video_name

def get_srt_class(srt_file_en, result_path, video_name, audio_path, audio_file = None, whisper_model = 'base', method = "stable"):
    # Instead of using the script_en variable directly, we'll use script_input
    if srt_file_en is not None: 
        srt = SRT_script.parse_from_srt_file(srt_file_en)
    else:
        # using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
        srt_file_en = "{}/{}/{}_en.srt".format(result_path, video_name, video_name)
        if not os.path.exists(srt_file_en):

            # use OpenAI API for transcribe
            if method == "api":
                transcript = openai.Audio.transcribe("whisper-1", audio_file) 

            # use local whisper model 
            elif method == "basic":
                model = whisper.load_model(whisper_model) # using base model in local machine (may use large model on our server)
                transcript = model.transcribe(audio_path)

            # use stable-whisper
            elif method == "stable":
                model = stable_whisper.load_model(whisper_model)
                transcript = model.transcribe(audio_path, regroup = False, initial_prompt="Hello, welcome to my lecture. Are you good my friend?")
                (
                    transcript
                    .split_by_punctuation(['.', '。', '?'])
                    .merge_by_gap(.15, max_words=3)
                    .merge_by_punctuation([' '])
                    .split_by_punctuation(['.', '。', '?'])
                )
                transcript = transcript.to_dict()
            else:
                raise ValueError("invalid speech to text method")

            srt = SRT_script(transcript['segments']) # read segments to SRT class

        else:
            srt = SRT_script.parse_from_srt_file(srt_file_en)
    return srt_file_en, srt

# Split the video script by sentences and create chunks within the token limit
def script_split(script_in, chunk_size = 1000):
    script_split = script_in.split('\n\n')
    script_arr = []
    range_arr = []
    start = 1
    end = 0
    script = ""
    for sentence in script_split:
        if len(script) + len(sentence) + 1 <= chunk_size:
            script += sentence + '\n\n'
            end+=1
        else:
            range_arr.append((start, end))
            start = end+1
            end += 1
            script_arr.append(script.strip())
            script = sentence + '\n\n'
    if script.strip():
        script_arr.append(script.strip())
        range_arr.append((start, len(script_split)-1))

    assert len(script_arr) == len(range_arr)
    return script_arr, range_arr

# check whether previous translation is done
# zh_file = "{}/{}/{}_zh.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
# segidx = 1
# if os.path.exists(zh_file):
#     temp_file = "{}/{}/temp.srt".format(RESULT_PATH, VIDEO_NAME)
#     if os.path.exists(temp_file):
#         os.remove(temp_file)
#     with open(zh_file, "r") as f0:
#         for count, _ in enumerate(f0):
#             pass
#         count += 1
#         segidx = int(count/4)+1
#     en_file = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
#     if args.srt_file is not None:
#         en_file = args.srt_file
#     with open(en_file, "r") as f1, open(temp_file, "a") as f2:
#         x = f1.readlines()
#         #print(len(x))
#         if count >= len(x):
#             print('Work already done! Please delete {}_zh.srt files in result directory first in order to rework'.format(VIDEO_NAME))
#             exit()
#         for i, line in enumerate(x):
#             if i >= count:
#                 f2.write(line)
                
#     srt = SRT_script.parse_from_srt_file(temp_file)
#     print('temp_contents')
#     print(srt.get_source_only())  


def get_response(model_name, sentence):
    if model_name == "gpt-3.5-turbo" or model_name == "gpt-4":
        response = openai.ChatCompletion.create(
            model=model_name,
            messages = [
                {"role": "system", "content": "You are a helpful assistant that translates English to Chinese and have decent background in starcraft2."},
                {"role": "system", "content": "Your translation has to keep the orginal format and be as accurate as possible."},
                {"role": "system", "content": "Your translation needs to be consistent with the number of sentences in the original."},
                {"role": "system", "content": "There is no need for you to add any comments or notes."},
                {"role": "user", "content": 'Translate the following English text to Chinese: "{}"'.format(sentence)}
            ],
            temperature=0.15
        )

        return response['choices'][0]['message']['content'].strip()
        
        
# Translate and save
def translate(srt, script_arr, range_arr, model_name, video_name, video_link):
    previous_length = 0
    for sentence, range in tqdm(zip(script_arr, range_arr)):
        # update the range based on previous length
        range = (range[0]+previous_length, range[1]+previous_length)

        # using chatgpt model
        print(f"now translating sentences {range}")
        flag = True
        while flag:
            flag = False
            try:
                translate = get_response(model_name, sentence)
            except Exception as e:
                print("An error has occurred during translation:",e)
                print("Retrying... the script will continue after 30 seconds.")
                time.sleep(30)
                flag = True
        srt.set_translation(translate, range, model_name, video_name, video_link)


def main():
    args = parse_args()

    # input check: input should be either video file or youtube video link.
    if args.link is None and args.video_file is None and args.srt_file is None and args.audio_file is None:
        print("need video source or srt file")
        exit()

    # set up
    openai.api_key = os.getenv("OPENAI_API_KEY")
    DOWNLOAD_PATH = args.download
    if not os.path.exists(DOWNLOAD_PATH):
        os.mkdir(DOWNLOAD_PATH)
        os.mkdir(f'{DOWNLOAD_PATH}/audio')
        os.mkdir(f'{DOWNLOAD_PATH}/video')

    RESULT_PATH = args.output_dir
    if not os.path.exists(RESULT_PATH):
        os.mkdir(RESULT_PATH)

    # set video name as the input file name if not specified
    if args.video_name == 'placeholder' :
        # set video name to upload file name
        if args.video_file is not None:
            VIDEO_NAME = args.video_file.split('/')[-1].split('.')[0]
        elif args.audio_file is not None:
            VIDEO_NAME = args.audio_file.split('/')[-1].split('.')[0]
        elif args.srt_file is not None:
            VIDEO_NAME = args.srt_file.split('/')[-1].split('.')[0].split("_")[0]
        else:
            VIDEO_NAME = args.video_name
    else:
        VIDEO_NAME = args.video_name

    audio_path, audio_file, video_path, VIDEO_NAME = get_sources(args, DOWNLOAD_PATH, RESULT_PATH, VIDEO_NAME)

    srt_file_en, srt = get_srt_class(args.srt_file, RESULT_PATH, VIDEO_NAME, audio_path, audio_file)

    # SRT class preprocess
    srt.form_whole_sentence()
    srt.spell_check_term()
    srt.correct_with_force_term()
    srt.write_srt_file_src(srt_file_en)
    script_input = srt.get_source_only()

    # write ass
    if not args.only_srt:
        assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
        print('ASS subtitle saved as: ' + assSub_en)

    script_arr, range_arr = script_split(script_input)

    translate(srt, script_arr, range_arr, args.model_name, VIDEO_NAME, args.link)

    # SRT post-processing
    srt.check_len_and_split()
    srt.remove_trans_punctuation()
    srt.write_srt_file_translate(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt")
    srt.write_srt_file_bilingual(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_bi.srt")

    # write ass
    if not args.only_srt:
        assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
        print('ASS subtitle saved as: ' + assSub_zh)

    # encode to .mp4 video file
    if args.v:
        if args.only_srt:
            os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')
        else:
            os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.ass" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')


if __name__ == "__main__":
    main()