Spaces:
Sleeping
Sleeping
File size: 12,780 Bytes
0a00054 0f7f63b d0f2803 0f7f63b f1ae450 eb01d5d 04ef04e 4f0065c f1ae450 04ef04e d0f2803 0f7f63b 0a00054 0f7f63b 0a00054 d581753 0a00054 b37d0d4 f1ae450 b37d0d4 f1ae450 b37d0d4 d581753 e4c138e b37d0d4 eb9b4ad 0f7f63b 0a00054 04ef04e 7df592d b37d0d4 d0f2803 b37d0d4 0f7f63b d581753 0f7f63b b37d0d4 d581753 0f7f63b d658831 eb9b4ad b37d0d4 d658831 0f7f63b d658831 eb9b4ad b37d0d4 d658831 0f7f63b b37d0d4 0f7f63b b37d0d4 0a00054 04ef04e 1a902ed b37d0d4 1a902ed cd67dcd 04ef04e cd67dcd 04ef04e fccaaea 04ef04e cd67dcd 0f7f63b d581753 0f7f63b 0a00054 f01af1f a12b2b8 e4c138e cd67dcd eb01d5d 58d59c0 f01af1f d0f2803 cd67dcd eb01d5d 0f7f63b b37d0d4 54a5e67 b37d0d4 0f7f63b cd67dcd 0a00054 04ef04e b37d0d4 cd67dcd d0f2803 cd67dcd d0f2803 04ef04e cd67dcd d0f2803 cd67dcd 04ef04e cd67dcd 04ef04e cd67dcd 04ef04e cd67dcd 04ef04e d0f2803 cd67dcd d0f2803 cd67dcd 04ef04e cd67dcd 0f7f63b b37d0d4 0f7f63b b37d0d4 0a00054 d0f2803 7df592d d581753 7df592d eb9b4ad 7df592d cd90680 7df592d eb9b4ad 7df592d cd90680 7df592d eb9b4ad 7df592d eb9b4ad d658831 eb9b4ad 7df592d cd90680 7df592d eb9b4ad d658831 eb9b4ad d658831 eb9b4ad d0f2803 d658831 eb9b4ad d658831 d0f2803 eb9b4ad d658831 7df592d d658831 cd90680 d658831 7df592d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import threading
import time
import openai
from pytube import YouTube
from os import getenv, getcwd
from pathlib import Path
from enum import Enum, auto
import logging
import subprocess
from src.srt_util.srt import SrtScript
from src.srt_util.srt2ass import srt2ass
from time import time, strftime, gmtime, sleep
from src.translators.translation import get_translation, prompt_selector
import torch
import stable_whisper
import shutil
"""
Youtube link
- link
- model
- output type
Video file
- path
- model
- output type
Audio file
- path
- model
- output type
"""
"""
TaskID
Progress: Enum
Computing resrouce status
SRT_Script : SrtScript
- input module -> initialize (ASR module)
- Pre-process
- Translation (%)
- Post process (time stamp)
- Output module: SRT_Script --> output(.srt)
- (Optional) mp4
"""
class TaskStatus(str, Enum):
CREATED = 'CREATED'
INITIALIZING_ASR = 'INITIALIZING_ASR'
PRE_PROCESSING = 'PRE_PROCESSING'
TRANSLATING = 'TRANSLATING'
POST_PROCESSING = 'POST_PROCESSING'
OUTPUT_MODULE = 'OUTPUT_MODULE'
class Task:
@property
def status(self):
with self.__status_lock:
return self.__status
@status.setter
def status(self, new_status):
with self.__status_lock:
self.__status = new_status
def __init__(self, task_id, task_local_dir, task_cfg):
self.__status_lock = threading.Lock()
self.__status = TaskStatus.CREATED
self.gpu_status = 0
openai.api_key = getenv("OPENAI_API_KEY")
self.task_id = task_id
self.task_local_dir = task_local_dir
self.ASR_setting = task_cfg["ASR"]
self.translation_setting = task_cfg["translation"]
self.translation_model = self.translation_setting["model"]
self.output_type = task_cfg["output_type"]
self.target_lang = task_cfg["target_lang"]
self.source_lang = task_cfg["source_lang"]
self.field = task_cfg["field"]
self.pre_setting = task_cfg["pre_process"]
self.post_setting = task_cfg["post_process"]
self.audio_path = None
self.SRT_Script = None
self.result = None
self.s_t = None
self.t_e = None
print(f"Task ID: {self.task_id}")
logging.info(f"Task ID: {self.task_id}")
logging.info(f"{self.source_lang} -> {self.target_lang} task in {self.field}")
logging.info(f"Translation Model: {self.translation_model}")
logging.info(f"subtitle_type: {self.output_type['subtitle']}")
logging.info(f"video_ouput: {self.output_type['video']}")
logging.info(f"bilingual_ouput: {self.output_type['bilingual']}")
logging.info("Pre-process setting:")
for key in self.pre_setting:
logging.info(f"{key}: {self.pre_setting[key]}")
logging.info("Post-process setting:")
for key in self.post_setting:
logging.info(f"{key}: {self.post_setting[key]}")
@staticmethod
def fromYoutubeLink(youtube_url, task_id, task_dir, task_cfg):
# convert to audio
logging.info("Task Creation method: Youtube Link")
return YoutubeTask(task_id, task_dir, task_cfg, youtube_url)
@staticmethod
def fromAudioFile(audio_path, task_id, task_dir, task_cfg):
# get audio path
logging.info("Task Creation method: Audio File")
return AudioTask(task_id, task_dir, task_cfg, audio_path)
@staticmethod
def fromVideoFile(video_path, task_id, task_dir, task_cfg):
# get audio path
logging.info("Task Creation method: Video File")
return VideoTask(task_id, task_dir, task_cfg, video_path)
# Module 1 ASR: audio --> SRT_script
def get_srt_class(self):
# Instead of using the script_en variable directly, we'll use script_input
# TODO: setup ASR module like translator
self.status = TaskStatus.INITIALIZING_ASR
self.t_s = time()
method = self.ASR_setting["whisper_config"]["method"]
whisper_model = self.ASR_setting["whisper_config"]["whisper_model"]
src_srt_path = self.task_local_dir.joinpath(f"task_{self.task_id}_{self.source_lang}.srt")
if not Path.exists(src_srt_path):
# extract script from audio
logging.info("extract script from audio")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if method == "api":
with open(self.audio_path, 'rb') as audio_file:
transcript = openai.Audio.transcribe(model="whisper-1", file=audio_file, response_format="srt")
elif method == "stable":
model = stable_whisper.load_model(whisper_model, device)
transcript = model.transcribe(str(self.audio_path), regroup=False,
initial_prompt="Hello, welcome to my lecture. Are you good my friend?")
(
transcript
.split_by_punctuation(['.', '。', '?'])
.merge_by_gap(.15, max_words=3)
.merge_by_punctuation([' '])
.split_by_punctuation(['.', '。', '?'])
)
transcript = transcript.to_dict()
# after get the transcript, release the gpu resource
torch.cuda.empty_cache()
self.SRT_Script = SrtScript(self.source_lang, self.target_lang, transcript['segments'], self.field)
# save the srt script to local
self.SRT_Script.write_srt_file_src(src_srt_path)
# Module 2: SRT preprocess: perform preprocess steps
def preprocess(self):
self.status = TaskStatus.PRE_PROCESSING
logging.info("--------------------Start Preprocessing SRT class--------------------")
if self.pre_setting["sentence_form"]:
self.SRT_Script.form_whole_sentence()
if self.pre_setting["spell_check"]:
self.SRT_Script.spell_check_term()
if self.pre_setting["term_correct"]:
self.SRT_Script.correct_with_force_term()
processed_srt_path_src = str(Path(self.task_local_dir) / f'{self.task_id}_processed.srt')
self.SRT_Script.write_srt_file_src(processed_srt_path_src)
if self.output_type["subtitle"] == "ass":
logging.info("write English .srt file to .ass")
assSub_src = srt2ass(processed_srt_path_src, "default", "No", "Modest")
logging.info('ASS subtitle saved as: ' + assSub_src)
self.script_input = self.SRT_Script.get_source_only()
pass
def update_translation_progress(self, new_progress):
if self.progress == TaskStatus.TRANSLATING:
self.progress = TaskStatus.TRANSLATING.value[0], new_progress
# Module 3: perform srt translation
def translation(self):
logging.info("---------------------Start Translation--------------------")
prompt = prompt_selector(self.source_lang, self.target_lang, self.field)
get_translation(self.SRT_Script, self.translation_model, self.task_id, prompt, self.translation_setting['chunk_size'])
# Module 4: perform srt post process steps
def postprocess(self):
self.status = TaskStatus.POST_PROCESSING
logging.info("---------------------Start Post-processing SRT class---------------------")
if self.post_setting["check_len_and_split"]:
self.SRT_Script.check_len_and_split()
if self.post_setting["remove_trans_punctuation"]:
self.SRT_Script.remove_trans_punctuation()
logging.info("---------------------Post-processing SRT class finished---------------------")
# Module 5: output module
def output_render(self):
self.status = TaskStatus.OUTPUT_MODULE
video_out = self.output_type["video"]
subtitle_type = self.output_type["subtitle"]
is_bilingual = self.output_type["bilingual"]
results_dir =f"{self.task_local_dir}/results"
subtitle_path = f"{results_dir}/{self.task_id}_{self.target_lang}.srt"
self.SRT_Script.write_srt_file_translate(subtitle_path)
if is_bilingual:
subtitle_path = f"{results_dir}/{self.task_id}_{self.source_lang}_{self.target_lang}.srt"
self.SRT_Script.write_srt_file_bilingual(subtitle_path)
if subtitle_type == "ass":
logging.info("write .srt file to .ass")
subtitle_path = srt2ass(subtitle_path, "default", "No", "Modest")
logging.info('ASS subtitle saved as: ' + subtitle_path)
final_res = subtitle_path
# encode to .mp4 video file
if video_out and self.video_path is not None:
logging.info("encoding video file")
logging.info(f'ffmpeg comand: \nffmpeg -i {self.video_path} -vf "subtitles={subtitle_path}" {results_dir}/{self.task_id}.mp4')
subprocess.run(
["ffmpeg",
"-i", self.video_path,
"-vf", f"subtitles={subtitle_path}",
f"{results_dir}/{self.task_id}.mp4"])
final_res = f"{results_dir}/{self.task_id}.mp4"
self.t_e = time()
logging.info(
"Pipeline finished, time duration:{}".format(strftime("%H:%M:%S", gmtime(self.t_e - self.t_s))))
return final_res
def run_pipeline(self):
self.get_srt_class()
self.preprocess()
self.translation()
self.postprocess()
self.result = self.output_render()
# print(self.result)
class YoutubeTask(Task):
def __init__(self, task_id, task_local_dir, task_cfg, youtube_url):
super().__init__(task_id, task_local_dir, task_cfg)
self.youtube_url = youtube_url
def run(self):
yt = YouTube(self.youtube_url)
video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if video:
video.download(str(self.task_local_dir), filename=f"task_{self.task_id}.mp4")
logging.info(f'Video Name: {video.default_filename}')
else:
raise FileNotFoundError(f" Video stream not found for link {self.youtube_url}")
audio = yt.streams.filter(only_audio=True).first()
if audio:
audio.download(str(self.task_local_dir), filename=f"task_{self.task_id}.mp3")
else:
logging.info(" download audio failed, using ffmpeg to extract audio")
subprocess.run(
['ffmpeg', '-i', self.task_local_dir.joinpath(f"task_{self.task_id}.mp4"), '-f', 'mp3',
'-ab', '192000', '-vn', self.task_local_dir.joinpath(f"task_{self.task_id}.mp3")])
logging.info("audio extraction finished")
self.video_path = self.task_local_dir.joinpath(f"task_{self.task_id}.mp4")
self.audio_path = self.task_local_dir.joinpath(f"task_{self.task_id}.mp3")
logging.info(f" Video File Dir: {self.video_path}")
logging.info(f" Audio File Dir: {self.audio_path}")
logging.info(" Data Prep Complete. Start pipeline")
super().run_pipeline()
class AudioTask(Task):
def __init__(self, task_id, task_local_dir, task_cfg, audio_path):
super().__init__(task_id, task_local_dir, task_cfg)
# TODO: check audio format
self.audio_path = audio_path
self.video_path = None
def run(self):
logging.info(f"Video File Dir: {self.video_path}")
logging.info(f"Audio File Dir: {self.audio_path}")
logging.info("Data Prep Complete. Start pipeline")
super().run_pipeline()
class VideoTask(Task):
def __init__(self, task_id, task_local_dir, task_cfg, video_path):
super().__init__(task_id, task_local_dir, task_cfg)
# TODO: check video format {.mp4}
new_video_path = f"{task_local_dir}/task_{self.task_id}.mp4"
print(new_video_path)
logging.info(f"Copy video file to: {new_video_path}")
shutil.copyfile(video_path, new_video_path)
self.video_path = new_video_path
def run(self):
logging.info("using ffmpeg to extract audio")
subprocess.run(
['ffmpeg', '-i', self.video_path, '-f', 'mp3',
'-ab', '192000', '-vn', self.task_local_dir.joinpath(f"task_{self.task_id}.mp3")])
logging.info("audio extraction finished")
self.audio_path = self.task_local_dir.joinpath(f"task_{self.task_id}.mp3")
logging.info(f" Video File Dir: {self.video_path}")
logging.info(f" Audio File Dir: {self.audio_path}")
logging.info("Data Prep Complete. Start pipeline")
super().run_pipeline() |