ViDove / pipeline.py
worldqwq
Prompt update and removed sentence number passing with prompt
259f806
raw
history blame
12.5 kB
import openai
from pytube import YouTube
import argparse
import os
from tqdm import tqdm
from SRT import SRT_script
import stable_whisper
import whisper
from srt2ass import srt2ass
import subprocess
import time
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
parser.add_argument("--video_file", help="local video path here", default=None, type=str, required=False)
parser.add_argument("--audio_file", help="local audio path here", default=None, type=str, required=False)
parser.add_argument("--srt_file", help="srt file input path here", default=None, type=str, required=False) # New argument
parser.add_argument("--download", help="download path", default='./downloads', type=str, required=False)
parser.add_argument("--output_dir", help="translate result path", default='./results', type=str, required=False)
parser.add_argument("--video_name", help="video name, if use video link as input, the name will auto-filled by youtube video name", default='placeholder', type=str, required=False)
parser.add_argument("--model_name", help="model name only support gpt-4 and gpt-3.5-turbo", type=str, required=False, default="gpt-4") # default change to gpt-4
parser.add_argument("-only_srt", help="set script output to only .srt file", action='store_true')
parser.add_argument("-v", help="auto encode script with video", action='store_true')
args = parser.parse_args()
return args
def get_sources(args, download_path, result_path, video_name):
# get source audio
if args.link is not None and args.video_file is None:
# Download audio from YouTube
video_link = args.link
video = None
audio = None
try:
yt = YouTube(video_link)
video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if video:
video.download(f'{download_path}/video')
print('Video download completed!')
else:
print("Error: Video stream not found")
audio = yt.streams.filter(only_audio=True, file_extension='mp4').first()
if audio:
audio.download(f'{download_path}/audio')
print('Audio download completed!')
else:
print("Error: Audio stream not found")
except Exception as e:
print("Connection Error")
print(e)
exit()
video_path = f'{download_path}/video/{video.default_filename}'
audio_path = '{}/audio/{}'.format(download_path, audio.default_filename)
audio_file = open(audio_path, "rb")
if video_name == 'placeholder':
video_name = audio.default_filename.split('.')[0]
elif args.video_file is not None:
# Read from local
video_path = args.video_file
if args.audio_file is not None:
audio_file= open(args.audio_file, "rb")
audio_path = args.audio_file
else:
output_audio_path = f'{download_path}/audio/{video_name}.mp3'
subprocess.run(['ffmpeg', '-i', video_path, '-f', 'mp3', '-ab', '192000', '-vn', output_audio_path])
audio_file = open(output_audio_path, "rb")
audio_path = output_audio_path
if not os.path.exists(f'{result_path}/{video_name}'):
os.mkdir(f'{result_path}/{video_name}')
if args.audio_file is not None:
audio_file= open(args.audio_file, "rb")
audio_path = args.audio_file
pass
return audio_path, audio_file, video_path, video_name
def get_srt_class(srt_file_en, result_path, video_name, audio_path, audio_file = None, whisper_model = 'large', method = "stable"):
# Instead of using the script_en variable directly, we'll use script_input
if srt_file_en is not None:
srt = SRT_script.parse_from_srt_file(srt_file_en)
else:
# using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
srt_file_en = "{}/{}/{}_en.srt".format(result_path, video_name, video_name)
if not os.path.exists(srt_file_en):
# use OpenAI API for transcribe
if method == "api":
transcript = openai.Audio.transcribe("whisper-1", audio_file)
# use local whisper model
elif method == "basic":
model = whisper.load_model(whisper_model) # using base model in local machine (may use large model on our server)
transcript = model.transcribe(audio_path)
# use stable-whisper
elif method == "stable":
model = stable_whisper.load_model(whisper_model)
transcript = model.transcribe(audio_path, regroup = False, initial_prompt="Hello, welcome to my lecture. Are you good my friend?")
(
transcript
.split_by_punctuation(['.', '。', '?'])
.merge_by_gap(.15, max_words=3)
.merge_by_punctuation([' '])
.split_by_punctuation(['.', '。', '?'])
)
transcript = transcript.to_dict()
else:
raise ValueError("invalid speech to text method")
srt = SRT_script(transcript['segments']) # read segments to SRT class
else:
srt = SRT_script.parse_from_srt_file(srt_file_en)
return srt_file_en, srt
# Split the video script by sentences and create chunks within the token limit
def script_split(script_in, chunk_size = 1000):
script_split = script_in.split('\n\n')
script_arr = []
range_arr = []
start = 1
end = 0
script = ""
for sentence in script_split:
if len(script) + len(sentence) + 1 <= chunk_size:
script += sentence + '\n\n'
end+=1
else:
range_arr.append((start, end))
start = end+1
end += 1
script_arr.append(script.strip())
script = sentence + '\n\n'
if script.strip():
script_arr.append(script.strip())
range_arr.append((start, len(script_split)-1))
assert len(script_arr) == len(range_arr)
return script_arr, range_arr
# check whether previous translation is done
# zh_file = "{}/{}/{}_zh.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
# segidx = 1
# if os.path.exists(zh_file):
# temp_file = "{}/{}/temp.srt".format(RESULT_PATH, VIDEO_NAME)
# if os.path.exists(temp_file):
# os.remove(temp_file)
# with open(zh_file, "r") as f0:
# for count, _ in enumerate(f0):
# pass
# count += 1
# segidx = int(count/4)+1
# en_file = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
# if args.srt_file is not None:
# en_file = args.srt_file
# with open(en_file, "r") as f1, open(temp_file, "a") as f2:
# x = f1.readlines()
# #print(len(x))
# if count >= len(x):
# print('Work already done! Please delete {}_zh.srt files in result directory first in order to rework'.format(VIDEO_NAME))
# exit()
# for i, line in enumerate(x):
# if i >= count:
# f2.write(line)
# srt = SRT_script.parse_from_srt_file(temp_file)
# print('temp_contents')
# print(srt.get_source_only())
def get_response(model_name, sentence):
if model_name == "gpt-3.5-turbo" or model_name == "gpt-4":
response = openai.ChatCompletion.create(
model=model_name,
messages = [
#{"role": "system", "content": "You are a helpful assistant that translates English to Chinese and have decent background in starcraft2."},
#{"role": "system", "content": "Your translation has to keep the orginal format and be as accurate as possible."},
#{"role": "system", "content": "Your translation needs to be consistent with the number of sentences in the original."},
#{"role": "system", "content": "There is no need for you to add any comments or notes."},
#{"role": "user", "content": 'Translate the following English text to Chinese: "{}"'.format(sentence)}
{"role": "system", "content": "你是一个翻译助理,你的任务是翻译星际争霸视频,你会被提供一个按行分割的英文段落,你需要在保证句意和行数的情况下输出翻译后的文本。"},
{"role": "user", "content": sentence}
],
temperature=0.15
)
return response['choices'][0]['message']['content'].strip()
# Translate and save
def translate(srt, script_arr, range_arr, model_name, video_name, video_link):
previous_length = 0
for sentence, range in tqdm(zip(script_arr, range_arr)):
# update the range based on previous length
range = (range[0]+previous_length, range[1]+previous_length)
# using chatgpt model
print(f"now translating sentences {range}")
flag = True
while flag:
flag = False
try:
translate = get_response(model_name, sentence)
except Exception as e:
print("An error has occurred during translation:",e)
print("Retrying... the script will continue after 30 seconds.")
time.sleep(30)
flag = True
srt.set_translation(translate, range, model_name, video_name, video_link)
def main():
args = parse_args()
# input check: input should be either video file or youtube video link.
if args.link is None and args.video_file is None and args.srt_file is None and args.audio_file is None:
print("need video source or srt file")
exit()
# set up
openai.api_key = os.getenv("OPENAI_API_KEY")
DOWNLOAD_PATH = args.download
if not os.path.exists(DOWNLOAD_PATH):
os.mkdir(DOWNLOAD_PATH)
os.mkdir(f'{DOWNLOAD_PATH}/audio')
os.mkdir(f'{DOWNLOAD_PATH}/video')
RESULT_PATH = args.output_dir
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
# set video name as the input file name if not specified
if args.video_name == 'placeholder' :
# set video name to upload file name
if args.video_file is not None:
VIDEO_NAME = args.video_file.split('/')[-1].split('.')[0]
elif args.audio_file is not None:
VIDEO_NAME = args.audio_file.split('/')[-1].split('.')[0]
elif args.srt_file is not None:
VIDEO_NAME = args.srt_file.split('/')[-1].split('.')[0].split("_")[0]
else:
VIDEO_NAME = args.video_name
else:
VIDEO_NAME = args.video_name
audio_path, audio_file, video_path, VIDEO_NAME = get_sources(args, DOWNLOAD_PATH, RESULT_PATH, VIDEO_NAME)
srt_file_en, srt = get_srt_class(args.srt_file, RESULT_PATH, VIDEO_NAME, audio_path, audio_file)
# SRT class preprocess
srt.form_whole_sentence()
srt.spell_check_term()
srt.correct_with_force_term()
srt.write_srt_file_src(srt_file_en)
script_input = srt.get_source_only()
# write ass
if not args.only_srt:
assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
print('ASS subtitle saved as: ' + assSub_en)
script_arr, range_arr = script_split(script_input)
translate(srt, script_arr, range_arr, args.model_name, VIDEO_NAME, args.link)
# SRT post-processing
srt.check_len_and_split()
srt.remove_trans_punctuation()
srt.write_srt_file_translate(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt")
srt.write_srt_file_bilingual(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_bi.srt")
# write ass
if not args.only_srt:
assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
print('ASS subtitle saved as: ' + assSub_zh)
# encode to .mp4 video file
if args.v:
if args.only_srt:
os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')
else:
os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.ass" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')
if __name__ == "__main__":
main()