ViDove / pipeline.py
Eason Lu
delete some files
d23f574
raw
history blame
7.28 kB
import openai
from pytube import YouTube
import argparse
import os
import io
import whisper
import ffmpeg
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
parser.add_argument("--video_file", help="local video path here", default=None, type=str, required=False)
parser.add_argument("--audio_file", help="local audio path here", default=None, type=str, required=False)
parser.add_argument("--srt_file", help="srt file input path here", default=None, type=str, required=False) # New argument
parser.add_argument("--download", help="download path", default='./downloads', type=str, required=False)
parser.add_argument("--output_dir", help="translate result path", default='./results', type=str, required=False)
parser.add_argument("--video_name", help="video name, if use video link as input, the name will auto-filled by youtube video name", default='placeholder', type=str, required=False)
parser.add_argument("--model_name", help="model name only support text-davinci-003 and gpt-3.5-turbo", type=str, required=False, default="gpt-3.5-turbo")
parser.add_argument("-only_srt", help="set script output to only .srt file", action='store_true')
parser.add_argument("-v", help="auto encode script with video", action='store_true')
args = parser.parse_args()
# input should be either video file or youtube video link.
if args.link is None and args.video_file is None and args.srt_file is None:
print("need video source or srt file")
exit()
# set up
openai.api_key = os.getenv("OPENAI_API_KEY")
DOWNLOAD_PATH = args.download
if not os.path.exists(DOWNLOAD_PATH):
os.mkdir(DOWNLOAD_PATH)
os.mkdir(f'{DOWNLOAD_PATH}/audio')
os.mkdir(f'{DOWNLOAD_PATH}/video')
RESULT_PATH = args.output_dir
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
VIDEO_NAME = args.video_name
model_name = args.model_name
# get source audio
if args.link is not None and args.video_file is None:
# Download audio from YouTube
video_link = args.link
video = None
audio = None
try:
yt = YouTube(video_link)
video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if video:
video.download(f'{DOWNLOAD_PATH}/video')
print('Video download completed!')
else:
print("Error: Video stream not found")
audio = yt.streams.filter(only_audio=True, file_extension='mp4').first()
if audio:
audio.download(f'{DOWNLOAD_PATH}/audio')
print('Audio download completed!')
else:
print("Error: Audio stream not found")
except Exception as e:
print("Connection Error")
print(e)
exit()
video_path = f'{DOWNLOAD_PATH}/video/{video.default_filename}'
# video_file = open(video_path, "rb")
audio_path = '{}/audio/{}'.format(DOWNLOAD_PATH, audio.default_filename)
audio_file = open(audio_path, "rb")
if VIDEO_NAME == 'placeholder':
VIDEO_NAME = audio.default_filename.split('.')[0]
elif args.video_file is not None:
# Read from local
# video_file = open(args.video_file, "rb")
video_path = args.video_file
if args.audio_file is not None:
audio_file= open(args.audio_file, "rb")
audio_path = args.audio_file
else:
os.system(f'ffmpeg -i {args.video_file} -f mp3 -ab 192000 -vn {DOWNLOAD_PATH}/audio/{VIDEO_NAME}.mp3')
audio_file= open(f'{DOWNLOAD_PATH}/audio/{VIDEO_NAME}.mp3', "rb")
audio_path = f'{DOWNLOAD_PATH}/audio/{VIDEO_NAME}.mp3'
if not os.path.exists(f'{RESULT_PATH}/{VIDEO_NAME}'):
os.mkdir(f'{RESULT_PATH}/{VIDEO_NAME}')
# Instead of using the script_en variable directly, we'll use script_input
srt_file_en = args.srt_file
if srt_file_en is not None:
with open(srt_file_en, 'r') as f:
script_input = f.read()
else:
# using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
srt_file_en = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
if not os.path.exists(srt_file_en):
# use OpenAI API for transcribe
# transcript = openai.Audio.transcribe("whisper-1", audio_file)
# use local whisper model
model = whisper.load_model("base") # using base model in local machine (may use large model on our server)
transcript = model.transcribe(audio_path)
#Write SRT file
from whisper.utils import WriteSRT
with open(srt_file_en, 'w', encoding="utf-8") as srt:
writer = WriteSRT(RESULT_PATH)
writer.write_result(transcript, srt)
# split the video script(open ai prompt limit: about 5000)
with open(srt_file_en, 'r') as f:
script_en = f.read()
script_input = script_en
if not args.only_srt:
from srt2ass import srt2ass
assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
print('ASS subtitle saved as: ' + assSub_en)
# Split the video script by sentences and create chunks within the token limit
n_threshold = 1500 # Token limit for the GPT-3 model
script_split = script_input.split('.')
script_arr = []
script = ""
for sentence in script_split:
if len(script) + len(sentence) + 1 <= n_threshold:
script += sentence + '.'
else:
script_arr.append(script.strip())
script = sentence + '.'
if script.strip():
script_arr.append(script.strip())
# Translate and save
for s in tqdm(script_arr):
# using chatgpt model
if model_name == "gpt-3.5-turbo":
# print(s + "\n")
response = openai.ChatCompletion.create(
model=model_name,
messages = [
{"role": "system", "content": "You are a helpful assistant that translates English to Chinese and have decent background in starcraft2."},
{"role": "user", "content": 'Translate the following English text to Chinese: "{}"'.format(s)}
],
temperature=0.15
)
with open(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", 'a+') as f:
f.write(response['choices'][0]['message']['content'].strip())
if model_name == "text-davinci-003":
prompt = f"Please help me translate this into Chinese:\n\n{s}\n\n"
# print(prompt)
response = openai.Completion.create(
model=model_name,
prompt=prompt,
temperature=0.1,
max_tokens=2000,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
with open(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", 'a+') as f:
f.write(response['choices'][0]['text'].strip())
if not args.only_srt:
assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
print('ASS subtitle saved as: ' + assSub_zh)
if args.v:
if args.only_srt:
os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')
else:
os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.ass" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')