ViDove / src /Pigeon.py
Xudong Xiao
Add class Task skeleton
0f7f63b
raw
history blame
17.2 kB
import logging
import subprocess
from argparse import ArgumentParser
from os import getenv
from pathlib import Path
from time import time, strftime, gmtime, sleep
from tqdm import tqdm
from datetime import datetime
import openai
import stable_whisper
import torch
import whisper
from pytube import YouTube
from src.srt_util.srt import SrtScript
from src.srt_util.srt2ass import srt2ass
def split_script(script_in, chunk_size=1000):
script_split = script_in.split('\n\n')
script_arr = []
range_arr = []
start = 1
end = 0
script = ""
for sentence in script_split:
if len(script) + len(sentence) + 1 <= chunk_size:
script += sentence + '\n\n'
end += 1
else:
range_arr.append((start, end))
start = end + 1
end += 1
script_arr.append(script.strip())
script = sentence + '\n\n'
if script.strip():
script_arr.append(script.strip())
range_arr.append((start, len(script_split) - 1))
assert len(script_arr) == len(range_arr)
return script_arr, range_arr
def get_response(model_name, sentence):
"""
Generates a translated response for a given sentence using a specified OpenAI model.
:param model_name: The name of the OpenAI model to be used for translation, either "gpt-3.5-turbo" or "gpt-4".
:param sentence: The English sentence related to StarCraft 2 videos that needs to be translated into Chinese.
:return: The translated Chinese sentence, maintaining the original format, meaning, and number of lines.
"""
if model_name == "gpt-3.5-turbo" or model_name == "gpt-4":
response = openai.ChatCompletion.create(
model=model_name,
messages=[
# {"role": "system", "content": "You are a helpful assistant that translates English to Chinese and have decent background in starcraft2."},
# {"role": "system", "content": "Your translation has to keep the orginal format and be as accurate as possible."},
# {"role": "system", "content": "Your translation needs to be consistent with the number of sentences in the original."},
# {"role": "system", "content": "There is no need for you to add any comments or notes."},
# {"role": "user", "content": 'Translate the following English text to Chinese: "{}"'.format(sentence)}
{"role": "system",
"content": "你是一个翻译助理,你的任务是翻译星际争霸视频,你会被提供一个按行分割的英文段落,你需要在保证句意和行数的情况下输出翻译后的文本。"},
{"role": "user", "content": sentence}
],
temperature=0.15
)
return response['choices'][0]['message']['content'].strip()
def check_translation(sentence, translation):
"""
check merge sentence issue from openai translation
"""
sentence_count = sentence.count('\n\n') + 1
translation_count = translation.count('\n\n') + 1
if sentence_count != translation_count:
# print("sentence length: ", len(sentence), sentence_count)
# print("translation length: ", len(translation), translation_count)
return False
else:
return True
# Translate and save
def translate(srt, script_arr, range_arr, model_name, video_name, video_link, attempts_count=5):
"""
Translates the given script array into another language using the chatgpt and writes to the SRT file.
This function takes a script array, a range array, a model name, a video name, and a video link as input. It iterates
through sentences and range in the script and range arrays. If the translation check fails for five times, the function
will attempt to resolve merge sentence issues and split the sentence into smaller tokens for a better translation.
:param srt: An instance of the Subtitle class representing the SRT file.
:param script_arr: A list of strings representing the original script sentences to be translated.
:param range_arr: A list of tuples representing the start and end positions of sentences in the script.
:param model_name: The name of the translation model to be used.
:param video_name: The name of the video.
:param video_link: The link to the video.
:param attempts_count: Number of attemps of failures for unmatched sentences.
"""
logging.info("Start translating...")
previous_length = 0
for sentence, range_ in tqdm(zip(script_arr, range_arr)):
# update the range based on previous length
range_ = (range_[0] + previous_length, range_[1] + previous_length)
# using chatgpt model
print(f"now translating sentences {range_}")
logging.info(f"now translating sentences {range_}, time: {datetime.now()}")
flag = True
while flag:
flag = False
try:
translate = get_response(model_name, sentence)
# detect merge sentence issue and try to solve for five times:
while not check_translation(sentence, translate) and attempts_count > 0:
translate = get_response(model_name, sentence)
attempts_count -= 1
# if failure still happen, split into smaller tokens
if attempts_count == 0:
single_sentences = sentence.split("\n\n")
logging.info("merge sentence issue found for range", range_)
translate = ""
for i, single_sentence in enumerate(single_sentences):
if i == len(single_sentences) - 1:
translate += get_response(model_name, single_sentence)
else:
translate += get_response(model_name, single_sentence) + "\n\n"
# print(single_sentence, translate.split("\n\n")[-2])
logging.info("solved by individually translation!")
except Exception as e:
logging.debug("An error has occurred during translation:", e)
print("An error has occurred during translation:", e)
print("Retrying... the script will continue after 30 seconds.")
sleep(30)
flag = True
srt.set_translation(translate, range_, model_name, video_name, video_link)
class Pigeon(object):
def __init__(self):
openai.api_key = getenv("OPENAI_API_KEY")
self.v = False
self.dir_download = None
self.dir_result = None
self.dir_log = None
self.srt_path = None
self.srt_only = False
self.srt = None
self.video_name = None
self.video_path = None
self.audio_path = None
self.video_link = None
self.video_file = None
self.model = None
self.parse()
self.t_s = None
self.t_e = None
def parse(self):
parser = ArgumentParser()
parser.add_argument("--link", help="youtube video link here", type=str)
parser.add_argument("--video_file", help="local video path", type=str)
parser.add_argument("--video_name", help="video name, auto-filled if not provided")
parser.add_argument("--audio_file", help="local audio path")
parser.add_argument("--srt_file", help="srt file input path here", type=str) # New argument
parser.add_argument("--download", help="download path", default='./downloads')
parser.add_argument("--output_dir", help="translate result path", default='./results')
# default change to gpt-4
parser.add_argument("--model_name", help="model name only support gpt-4 and gpt-3.5-turbo", default="gpt-4")
parser.add_argument("--log_dir", help="log path", default='./logs')
parser.add_argument("-only_srt", help="set script output to only .srt file", action='store_true')
parser.add_argument("-v", help="auto encode script with video", action='store_true')
args = parser.parse_args()
self.v = args.v
self.model = args.model_name
self.srt_path = args.srt_file
self.srt_only = args.only_srt
# Set download path
self.dir_download = Path(args.download)
if not self.dir_download.exists():
self.dir_download.mkdir(parents=False, exist_ok=False)
self.dir_download.joinpath('audio').mkdir(parents=False, exist_ok=False)
self.dir_download.joinpath('video').mkdir(parents=False, exist_ok=False)
# Set result path
self.dir_result = Path(args.output_dir)
if not self.dir_result.exists():
self.dir_result.mkdir(parents=False, exist_ok=False)
# TODO: change if-else logic
# Next, prepare video & audio files
# Set video related
if args.link is not None and (args.video_file is not None or args.audio_file is not None):
raise ValueError("Please provide either video link or video/audio file path, not both.")
if args.link is not None:
self.video_link = args.link
# Download audio from YouTube
try:
yt = YouTube(self.video_link)
video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if video:
video.download(str(self.dir_download.joinpath("video")))
print(f'Video download completed to {self.dir_download.joinpath("video")}!')
else:
raise FileNotFoundError(f"Video stream not found for link {self.video_link}")
audio = yt.streams.filter(only_audio=True, file_extension='mp4').first()
if audio:
audio.download(str(self.dir_download.joinpath("audio")))
print(f'Audio download completed to {self.dir_download.joinpath("audio")}!')
else:
raise FileNotFoundError(f"Audio stream not found for link {self.video_link}")
except Exception as e:
print("Connection Error: ", end='')
print(e)
raise ConnectionError
self.video_path = self.dir_download.joinpath("video").joinpath(video.default_filename)
self.audio_path = self.dir_download.joinpath("audio").joinpath(audio.default_filename)
if args.video_name is not None:
self.video_name = args.video_name
else:
self.video_name = Path(video.default_filename).stem
else:
if args.video_file is not None:
self.video_path = args.video_file
# Read from local video file
self.video_path = args.video_file
if args.video_name is not None:
self.video_name = args.video_name
else:
self.video_name = Path(self.video_path).stem
if args.audio_file is not None:
self.audio_path = args.audio_file
else:
audio_path_out = self.dir_download.joinpath("audio").joinpath(f"{self.video_name}.mp3")
subprocess.run(['ffmpeg', '-i', self.video_path, '-f', 'mp3', '-ab', '192000', '-vn', audio_path_out])
self.audio_path = audio_path_out
else:
raise NotImplementedError("Currently audio file only not supported")
if not self.dir_result.joinpath(self.video_name).exists():
self.dir_result.joinpath(self.video_name).mkdir(parents=False, exist_ok=False)
# Log setup
self.dir_log = Path(args.log_dir)
if not Path(args.log_dir).exists():
self.dir_log.mkdir(parents=False, exist_ok=False)
logging.basicConfig(level=logging.INFO, handlers=[
logging.FileHandler(
"{}/{}_{}.log".format(self.dir_log, self.video_name, datetime.now().strftime("%m%d%Y_%H%M%S")),
'w', encoding='utf-8')])
logging.info("---------------------Video Info---------------------")
logging.info(
f"Video name: {self.video_name}, translation model: {self.model}, video link: {self.video_link}")
return
def get_srt_class(self, whisper_model='tiny', method="stable"):
# Instead of using the script_en variable directly, we'll use script_input
if self.srt_path is not None:
srt = SrtScript.parse_from_srt_file(self.srt_path)
else:
# using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
self.srt_path = Path(f"{self.dir_result}/{self.video_name}/{self.video_name}_en.srt")
if not Path(self.srt_path).exists():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# use OpenAI API for transcribe
if method == "api":
with open(self.audio_path, "rb") as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
# use local whisper model
elif method == "basic":
# using base model in local machine (may use large model on our server)
model = whisper.load_model(whisper_model, device=device)
transcript = model.transcribe(self.audio_path)
# use stable-whisper
elif method == "stable":
# use cuda if available
model = stable_whisper.load_model(whisper_model, device=device)
transcript = model.transcribe(str(self.audio_path), regroup=False,
initial_prompt="Hello, welcome to my lecture. Are you good my friend?")
(
transcript
.split_by_punctuation(['.', '。', '?'])
.merge_by_gap(.15, max_words=3)
.merge_by_punctuation([' '])
.split_by_punctuation(['.', '。', '?'])
)
transcript = transcript.to_dict()
else:
raise ValueError("invalid speech to text method")
srt = SrtScript(transcript['segments']) # read segments to SRT class
else:
srt = SrtScript.parse_from_srt_file(self.srt_path)
self.srt = srt
return
def preprocess(self):
self.t_s = time()
self.get_srt_class()
# SRT class preprocess
logging.info("--------------------Start Preprocessing SRT class--------------------")
self.srt.write_srt_file_src(self.srt_path)
self.srt.form_whole_sentence()
# self.srt.spell_check_term()
self.srt.correct_with_force_term()
processed_srt_file_en = str(Path(self.srt_path).with_suffix('')) + '_processed.srt'
self.srt.write_srt_file_src(processed_srt_file_en)
script_input = self.srt.get_source_only()
# write ass
if not self.srt_only:
logging.info("write English .srt file to .ass")
assSub_en = srt2ass(processed_srt_file_en, "default", "No", "Modest")
logging.info('ASS subtitle saved as: ' + assSub_en)
return script_input
def start_translation(self, script_input):
script_arr, range_arr = split_script(script_input)
logging.info("---------------------Start Translation--------------------")
translate(self.srt, script_arr, range_arr, self.model, self.video_name, self.video_link)
def postprocess(self):
# SRT post-processing
logging.info("---------------------Start Post-processing SRT class---------------------")
self.srt.check_len_and_split()
self.srt.remove_trans_punctuation()
base_path = Path(self.dir_result).joinpath(self.video_name).joinpath(self.video_name)
self.srt.write_srt_file_translate(f"{base_path}_zh.srt")
self.srt.write_srt_file_bilingual(f"{base_path}_bi.srt")
# write ass
if not self.srt_only:
logging.info("write Chinese .srt file to .ass")
assSub_zh = srt2ass(f"{base_path}_zh.srt", "default", "No", "Modest")
logging.info('ASS subtitle saved as: ' + assSub_zh)
# encode to .mp4 video file
if self.v:
logging.info("encoding video file")
if self.srt_only:
subprocess.run(
f'ffmpeg -i {self.video_path} -vf "subtitles={base_path}_zh.srt" {base_path}.mp4')
else:
subprocess.run(
f'ffmpeg -i {self.video_path} -vf "subtitles={base_path}_zh.ass" {base_path}.mp4')
self.t_e = time()
logging.info(
"Pipeline finished, time duration:{}".format(strftime("%H:%M:%S", gmtime(self.t_e - self.t_s))))
def run(self):
script_input = self.preprocess()
self.start_translation(script_input)
self.postprocess()