ViDove / pipeline.py
JiaenLiu
add batch output and continue translate function
e3825f8
raw
history blame
11.1 kB
import openai
from pytube import YouTube
import argparse
import os
from tqdm import tqdm
from SRT import SRT_script
import stable_whisper
import time
parser = argparse.ArgumentParser()
parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
parser.add_argument("--video_file", help="local video path here", default=None, type=str, required=False)
parser.add_argument("--audio_file", help="local audio path here", default=None, type=str, required=False)
parser.add_argument("--srt_file", help="srt file input path here", default=None, type=str, required=False) # New argument
parser.add_argument("--download", help="download path", default='./downloads', type=str, required=False)
parser.add_argument("--output_dir", help="translate result path", default='./results', type=str, required=False)
parser.add_argument("--video_name", help="video name, if use video link as input, the name will auto-filled by youtube video name", default='placeholder', type=str, required=False)
parser.add_argument("--model_name", help="model name only support gpt-4 and gpt-3.5-turbo", type=str, required=False, default="gpt-3.5-turbo")
parser.add_argument("-only_srt", help="set script output to only .srt file", action='store_true')
parser.add_argument("-v", help="auto encode script with video", action='store_true')
args = parser.parse_args()
# input should be either video file or youtube video link.
if args.link is None and args.video_file is None and args.srt_file is None:
print("need video source or srt file")
exit()
# set up
openai.api_key = os.getenv("OPENAI_API_KEY")
DOWNLOAD_PATH = args.download
if not os.path.exists(DOWNLOAD_PATH):
os.mkdir(DOWNLOAD_PATH)
os.mkdir(f'{DOWNLOAD_PATH}/audio')
os.mkdir(f'{DOWNLOAD_PATH}/video')
RESULT_PATH = args.output_dir
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
# set video name as the input file name if not specified
if args.video_name == 'placeholder' :
# set video name to upload file name
if args.video_file is not None:
VIDEO_NAME = args.video_file.split('/')[-1].split('.')[0]
elif args.audio_file is not None:
VIDEO_NAME = args.audio_file.split('/')[-1].split('.')[0]
elif args.srt_file is not None:
VIDEO_NAME = args.srt_file.split('/')[-1].split('.')[0]
else:
VIDEO_NAME = args.video_name
model_name = args.model_name
threshold = 30
# get source audio
if args.link is not None and args.video_file is None:
# Download audio from YouTube
video_link = args.link
video = None
audio = None
try:
yt = YouTube(video_link)
video = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if video:
video.download(f'{DOWNLOAD_PATH}/video')
print('Video download completed!')
else:
print("Error: Video stream not found")
audio = yt.streams.filter(only_audio=True, file_extension='mp4').first()
if audio:
audio.download(f'{DOWNLOAD_PATH}/audio')
print('Audio download completed!')
else:
print("Error: Audio stream not found")
except Exception as e:
print("Connection Error")
print(e)
exit()
video_path = f'{DOWNLOAD_PATH}/video/{video.default_filename}'
audio_path = '{}/audio/{}'.format(DOWNLOAD_PATH, audio.default_filename)
audio_file = open(audio_path, "rb")
if VIDEO_NAME == 'placeholder':
VIDEO_NAME = audio.default_filename.split('.')[0]
elif args.video_file is not None:
# Read from local
video_path = args.video_file
if args.audio_file is not None:
audio_file= open(args.audio_file, "rb")
audio_path = args.audio_file
else:
os.system(f'ffmpeg -i {args.video_file} -f mp3 -ab 192000 -vn {DOWNLOAD_PATH}/audio/{VIDEO_NAME}.mp3')
audio_file= open(f'{DOWNLOAD_PATH}/audio/{VIDEO_NAME}.mp3', "rb")
audio_path = f'{DOWNLOAD_PATH}/audio/{VIDEO_NAME}.mp3'
if not os.path.exists(f'{RESULT_PATH}/{VIDEO_NAME}'):
os.mkdir(f'{RESULT_PATH}/{VIDEO_NAME}')
if args.audio_file is not None:
audio_file= open(args.audio_file, "rb")
audio_path = args.audio_file
# Instead of using the script_en variable directly, we'll use script_input
srt_file_en = args.srt_file
if srt_file_en is not None:
srt = SRT_script.parse_from_srt_file(srt_file_en)
else:
# using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
srt_file_en = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
if not os.path.exists(srt_file_en):
# use OpenAI API for transcribe
# transcript = openai.Audio.transcribe("whisper-1", audio_file)
# use local whisper model
# model = whisper.load_model("base") # using base model in local machine (may use large model on our server)
# transcript = model.transcribe(audio_path)
# use stable-whisper
model = stable_whisper.load_model('base')
transcript = model.transcribe(audio_path, regroup = False)
(
transcript
.split_by_punctuation(['.', '。', '?'])
.merge_by_gap(.15, max_words=3)
.merge_by_punctuation([' '])
.split_by_punctuation(['.', '。', '?'])
)
# transcript.to_srt_vtt(srt_file_en)
transcript = transcript.to_dict()
srt = SRT_script(transcript['segments']) # read segments to SRT class
#Write SRT file
# from whisper.utils import WriteSRT
# with open(srt_file_en, 'w', encoding="utf-8") as f:
# writer = WriteSRT(RESULT_PATH)
# writer.write_result(transcript, f)
else:
srt = SRT_script.parse_from_srt_file(srt_file_en)
# srt class preprocess
srt.form_whole_sentence()
srt.spell_check_term()
srt.correct_with_force_term()
srt.write_srt_file_src(srt_file_en)
script_input = srt.get_source_only()
if not args.only_srt:
from srt2ass import srt2ass
assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
print('ASS subtitle saved as: ' + assSub_en)
# Split the video script by sentences and create chunks within the token limit
def script_split(script_in, chunk_size = 1000):
script_split = script_in.split('\n\n')
script_arr = []
range_arr = []
start = 1
end = 0
script = ""
for sentence in script_split:
if len(script) + len(sentence) + 1 <= chunk_size:
script += sentence + '\n\n'
end+=1
else:
range_arr.append((start, end))
start = end+1
end += 1
script_arr.append(script.strip())
script = sentence + '\n\n'
if script.strip():
script_arr.append(script.strip())
range_arr.append((start, len(script_split)-1))
assert len(script_arr) == len(range_arr)
return script_arr, range_arr
script_arr, range_arr = script_split(script_input)
# print(script_arr, range_arr)
# check whether previous translation is done
zh_file = "{}/{}/{}_zh.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
segidx = 1
if os.path.exists(zh_file):
temp_file = "{}/{}/temp.srt".format(RESULT_PATH, VIDEO_NAME)
if os.path.exists(temp_file):
os.remove(temp_file)
with open(zh_file, "r") as f0:
for count, _ in enumerate(f0):
pass
count += 1
segidx = int(count/4)+1
with open("{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME), "r") as f1, open(temp_file, "a") as f2:
x = f1.readlines()
#print(len(x))
if count >= len(x):
print('Work already done! Please delete {}_zh.srt files in result directory first in order to rework'.format(VIDEO_NAME))
exit()
for i, line in enumerate(x):
if i >= count:
#print(i)
f2.write(line)
srt = SRT_script.parse_from_srt_file(temp_file)
print('temp_contents')
print(srt.get_source_only())
def get_response(model_name, sentence):
if model_name == "gpt-3.5-turbo" or model_name == "gpt-4":
# print(s + "\n")
response = openai.ChatCompletion.create(
model=model_name,
messages = [
{"role": "system", "content": "You are a helpful assistant that translates English to Chinese and have decent background in starcraft2."},
{"role": "system", "content": "Your translation has to keep the orginal format and be as accurate as possible."},
{"role": "system", "content": "There is no need for you to add any comments or notes."},
{"role": "user", "content": 'Translate the following English text to Chinese: "{}"'.format(sentence)}
],
temperature=0.15
)
return response['choices'][0]['message']['content'].strip()
# if model_name == "text-davinci-003":
# prompt = f"Please help me translate this into Chinese:\n\n{s}\n\n"
# # print(prompt)
# response = openai.Completion.create(
# model=model_name,
# prompt=prompt,
# temperature=0.1,
# max_tokens=2000,
# top_p=1.0,
# frequency_penalty=0.0,
# presence_penalty=0.0
# )
# return response['choices'][0]['text'].strip()
pass
# Translate and save
for sentence, range in tqdm(zip(script_arr, range_arr)):
# using chatgpt model
print(f"now translating sentences {range}")
flag = True
while flag:
flag = False
try:
translate = get_response(model_name, sentence)
except Exception as e:
print("An error has occurred during translation:",e)
print("Retrying... the script will continue after 30 seconds.")
time.sleep(30)
flag = True
# add read-time output back and modify the post-processing by using one batch as an unit.
print(translate)
srt.set_translation(translate, range, model_name)
add_length = srt.check_len_and_split_range(range)
srt.realtime_write_srt(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt",range, add_length,segidx)
srt.realtime_bilingual_write_srt(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_bi.srt",range, add_length,segidx)
# srt.check_len_and_split()
# srt.write_srt_file_translate(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt")
# srt.write_srt_file_bilingual(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_bi.srt")
if not args.only_srt:
assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
print('ASS subtitle saved as: ' + assSub_zh)
if args.v:
if args.only_srt:
os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')
else:
os.system(f'ffmpeg -i {video_path} -vf "subtitles={RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.ass" {RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}.mp4')