Spaces:
Sleeping
Sleeping
TheAnsIs42
commited on
Commit
·
3853a8e
1
Parent(s):
4ad1e3f
change filename, parse results
Browse filesFormer-commit-id: 6686e2a3ddcb1ba2871be6a1786c262af1a852ba
evaluation/scores/{multi_score.py → multi_scores.py}
RENAMED
@@ -2,15 +2,15 @@ from comet import download_model, load_from_checkpoint
|
|
2 |
from sacrebleu.metrics import BLEU, CHRF, TER
|
3 |
import LLM_eval
|
4 |
|
5 |
-
class
|
6 |
def __init__(self) -> None:
|
7 |
self.comet_model = load_from_checkpoint(download_model("Unbabel/wmt22-comet-da"))
|
8 |
self.bleu_model = BLEU()
|
9 |
self.LLM_model = LLM_eval.init_evaluator()
|
10 |
|
11 |
-
def get(self, src, mt, ref):
|
12 |
-
comet_score = self.comet_model.predict([{"src":src, "mt":mt, "ref":ref}], batch_size=8, gpus=0).scores
|
13 |
bleu_score = self.bleu_model.corpus_score(mt, ref).score
|
14 |
-
LLM_score = LLM_eval.evaluate_prediction(src, ref, mt, self.LLM_model)
|
15 |
return {'bleu':bleu_score, 'comet':comet_score, 'llm':LLM_score}
|
16 |
|
|
|
2 |
from sacrebleu.metrics import BLEU, CHRF, TER
|
3 |
import LLM_eval
|
4 |
|
5 |
+
class multi_scores:
|
6 |
def __init__(self) -> None:
|
7 |
self.comet_model = load_from_checkpoint(download_model("Unbabel/wmt22-comet-da"))
|
8 |
self.bleu_model = BLEU()
|
9 |
self.LLM_model = LLM_eval.init_evaluator()
|
10 |
|
11 |
+
def get(self, src:str, mt:str, ref:str) -> dict:
|
12 |
+
comet_score = self.comet_model.predict([{"src":src, "mt":mt, "ref":ref}], batch_size=8, gpus=0).scores[0]
|
13 |
bleu_score = self.bleu_model.corpus_score(mt, ref).score
|
14 |
+
LLM_score = LLM_eval.evaluate_prediction(src, ref, mt, self.LLM_model).score
|
15 |
return {'bleu':bleu_score, 'comet':comet_score, 'llm':LLM_score}
|
16 |
|
evaluation/scores/{scores.py → score.py}
RENAMED
@@ -2,7 +2,9 @@ from comet import download_model, load_from_checkpoint
|
|
2 |
from sacrebleu.metrics import BLEU, CHRF, TER
|
3 |
|
4 |
def COMETscore(src, mt, ref):
|
5 |
-
data = [
|
|
|
|
|
6 |
model_path = download_model("Unbabel/wmt22-comet-da")
|
7 |
model = load_from_checkpoint(model_path)
|
8 |
model_output = model.predict(data, batch_size = 8, gpus=0)
|
|
|
2 |
from sacrebleu.metrics import BLEU, CHRF, TER
|
3 |
|
4 |
def COMETscore(src, mt, ref):
|
5 |
+
data = []
|
6 |
+
for i in enumerate(src):
|
7 |
+
data.append({"src":src[i], "mt":mt[i], "ref":ref[i]})
|
8 |
model_path = download_model("Unbabel/wmt22-comet-da")
|
9 |
model = load_from_checkpoint(model_path)
|
10 |
model_output = model.predict(data, batch_size = 8, gpus=0)
|