Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
from openai import AzureOpenAI | |
from functions import call_function | |
import firebase_admin | |
from firebase_admin import credentials, firestore | |
st.title("SupportFlow Demo") | |
# when will my order be delivered?, colin.flueck@gmail.com W123123 | |
functions = [ | |
{ | |
"name": "lookup_order_status", | |
"description": "Retrieves the status, location, etc. of an order based on **both** the email address and order number.", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"email_address": { | |
"type": "string", | |
"description": "The email address associated with the order" | |
}, | |
"order_number": { | |
"type": "integer", | |
"description": "The order number." | |
}, | |
}, | |
"required": ["email_address", "order_number"] | |
} | |
}, | |
# { | |
# "name": "lookup_product", | |
# "description": "Returns a detailed list of products based on a product query.", | |
# "parameters": { | |
# "type": "object", | |
# "properties": { | |
# "query": { | |
# "type": "string", | |
# "description": "Product query to search for like drills, lights, or hammers" | |
# }, | |
# }, | |
# "required": ["query"] | |
# } | |
# }, | |
# { | |
# "name": "get_product_listing", | |
# "description": "Returns information about the product based on the SKU.", | |
# "parameters": { | |
# "type": "object", | |
# "properties": { | |
# "sku": { | |
# "type": "integer", | |
# "description": "Product sku to search for like 123123" | |
# }, | |
# }, | |
# "required": ["sku"] | |
# } | |
# }, | |
{ | |
"name": "refer_to_human_agent", | |
"description": "Use this to refer the customer's question to a human agent. You should only call this " | |
"function if there is no way for you to answer their question.", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"conversation_summary": { | |
"type": "string", | |
"description": "A short summary of the current conversation so the human agent can quickly get up " | |
"to speed. Make sure you include all relevant details." | |
}, | |
}, | |
"required": ["conversation_summary"] | |
} | |
} | |
] | |
cred = credentials.Certificate("supportflow-4851d-firebase-adminsdk-cdrzu-bf620a4b52.json") | |
try: | |
app = firebase_admin.initialize_app(cred) | |
except Exception: | |
pass | |
db = firestore.client() | |
client = AzureOpenAI( | |
api_key=os.environ['OPENAI_API_KEY'], | |
api_version="2023-07-01-preview", | |
azure_endpoint=os.environ['AZURE_ENDPOINT'], | |
) | |
if "openai_model" not in st.session_state: | |
st.session_state["openai_model"] = "gpt-35-turbo" | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role": "system", "content": "You are a helpful customer support agent for The Home " | |
"Depot. Your goal is to answer as many questions as " | |
"possible without escalating to a human agent. " | |
"However, if necessary, you can refer the customer to " | |
"a human agent if you do not know the answer to their " | |
"question. For example, you can help users track their orders, but you **cannot** help with returns."},] | |
for message in st.session_state.messages: | |
if message["role"] == "assistant" or message["role"] == "user": | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if prompt := st.chat_input("How can we help you today?"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant", avatar="🏠"): # avatar=st.image('Home-Depot-Logo.png', width=50)): | |
message_placeholder = st.empty() | |
full_message = "" | |
func_call = { | |
"name": None, | |
"arguments": "", | |
} | |
for response in client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": m["role"], "content": m["content"], "name": m["name"]} if "name" in m else | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
functions=functions, | |
function_call="auto", | |
stream=True, | |
): | |
if len(response.choices) > 0: | |
delta = response.choices[0].delta | |
full_message += (delta.content or "") | |
if delta.function_call is not None: | |
if delta.function_call.name is not None: | |
func_call["name"] = delta.function_call.name | |
if delta.function_call.arguments is not None: | |
func_call["arguments"] += delta.function_call.arguments | |
message_placeholder.markdown(full_message + "") | |
if func_call["name"] is not None and func_call["arguments"] != "": | |
print(f"Function generation requested, calling function") | |
function_response = call_function(st.session_state.messages, func_call) | |
print("function response") | |
print(function_response) | |
st.session_state.messages.append(function_response) | |
if function_response["name"] is not None and function_response["name"] == "refer_to_human_agent": | |
print("connect to human agent") | |
print(function_response["name"]) | |
st.info('You will be connected with an agent shortly', icon="ℹ️") | |
# Get the document to update | |
doc_ref = db.collection('handoffs').document('conversation') | |
# Update the document | |
doc_ref.update({'summary': str(function_response["content"]), 'message_history': st.session_state.messages}) | |
else: | |
message_placeholder = st.empty() | |
full_message = "" | |
for response in client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": m["role"], "content": m["content"], "name": m["name"]} if "name" in m else | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
functions=functions, | |
function_call="auto", | |
stream=True, | |
): | |
if len(response.choices) > 0: | |
delta = response.choices[0].delta | |
full_message += (delta.content or "") | |
if delta.function_call is not None: | |
if delta.function_call.name is not None: | |
func_call["name"] = delta.function_call.name | |
if delta.function_call.arguments is not None: | |
func_call["arguments"] += delta.function_call.arguments | |
message_placeholder.markdown(full_message + "") | |
message_placeholder.markdown(full_message) | |
st.session_state.messages.append({"role": "assistant", "content": full_message}) | |