Staticaliza commited on
Commit
23dc4e5
·
verified ·
1 Parent(s): 13234fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +465 -59
app.py CHANGED
@@ -1,75 +1,481 @@
1
  import gradio as gr
2
- import torch
3
- import threading
4
  import spaces
 
 
 
 
 
 
5
 
6
- from transformers import AutoTokenizer, TextIteratorStreamer
7
- from auto_gptq import AutoGPTQForCausalLM
 
 
 
 
 
 
8
 
9
- # Model identifier
10
- model_id = "jncraton/SmolLM2-1.7B-Instruct-ct2-int8"
 
11
 
12
- # Load the tokenizer
13
- tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False, trust_remote_code=True)
14
 
15
- print("Is CUDA available?", torch.cuda.is_available())
 
 
 
 
16
 
17
- class ModelWrapper:
18
- def __init__(self):
19
- self.model = None # Model will be loaded when GPU is allocated
20
 
21
- @spaces.GPU
22
- def generate(self, prompt):
23
- if self.model is None:
24
- # Explicitly set device_map to 'cuda'
25
- self.model = AutoGPTQForCausalLM.from_quantized(
26
- model_id,
27
- device_map={'': 'cuda:0'},
28
- trust_remote_code=True,
29
- )
30
- self.model.eval()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- print("Model is on device:", next(self.model.parameters()).device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
- # Tokenize the input prompt
35
- inputs = tokenizer(prompt, return_tensors='pt').to('cuda')
36
- print("Inputs are on device:", inputs['input_ids'].device)
37
 
38
- # Set up the streamer
39
- streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
 
 
 
 
40
 
41
- # Prepare generation arguments
42
- generation_kwargs = dict(
43
- **inputs,
44
- streamer=streamer,
45
- do_sample=True,
46
- max_new_tokens=512,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
- # Start generation in a separate thread to enable streaming
50
- thread = threading.Thread(target=self.model.generate, kwargs=generation_kwargs)
51
- thread.start()
52
-
53
- # Yield generated text in real-time
54
- generated_text = ""
55
- for new_text in streamer:
56
- generated_text += new_text
57
- yield generated_text
58
-
59
- # Instantiate the model wrapper
60
- model_wrapper = ModelWrapper()
61
-
62
- # Create the Gradio interface
63
- interface = gr.Interface(
64
- fn=model_wrapper.generate,
65
- inputs=gr.Textbox(lines=5, label="Input Prompt"),
66
- outputs=gr.Textbox(label="Generated Text", lines=10),
67
- title="Mistral-Large-Instruct-2407 Text Completion",
68
- description="Enter a prompt and receive a text completion using the Mistral-Large-Instruct-2407 INT4 model.",
69
- allow_flagging='never',
70
- live=False,
71
- cache_examples=False
72
  )
73
 
74
- if __name__ == "__main__":
75
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import numpy as np
3
+ import soundfile as sf
4
  import spaces
5
+ import torch
6
+ import torchaudio
7
+ import librosa
8
+ import yaml
9
+ import tempfile
10
+ import os
11
 
12
+ from huggingface_hub import hf_hub_download
13
+ from transformers import AutoFeatureExtractor, WhisperModel
14
+ from torch.nn.utils import parametrizations
15
+ from modules.commons import build_model, load_checkpoint, recursive_munch
16
+ from modules.campplus.DTDNN import CAMPPlus
17
+ from modules.bigvgan import bigvgan
18
+ from modules.rmvpe import RMVPE
19
+ from modules.audio import mel_spectrogram
20
 
21
+ # ----------------------------
22
+ # Optimization Settings
23
+ # ----------------------------
24
 
25
+ # Set the number of threads to the number of CPU cores
26
+ torch.set_num_threads(os.cpu_count())
27
 
28
+ # Enable optimized backends
29
+ torch.backends.openmp.enabled = True
30
+ torch.backends.mkldnn.enabled = True
31
+ torch.backends.cudnn.enabled = False
32
+ torch.backends.cuda.enabled = False
33
 
34
+ torch.set_grad_enabled(False)
 
 
35
 
36
+ # Force CPU usage
37
+ device = torch.device("cpu")
38
+ print(f"[DEVICE] | Using device: {device}")
39
+
40
+ # ----------------------------
41
+ # Load Models and Configuration
42
+ # ----------------------------
43
+
44
+ def load_custom_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.yml"):
45
+ os.makedirs("./checkpoints", exist_ok=True)
46
+ model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir="./checkpoints")
47
+ if config_filename is None:
48
+ return model_path
49
+ config_path = hf_hub_download(repo_id=repo_id, filename=config_filename, cache_dir="./checkpoints")
50
+
51
+ return model_path, config_path
52
+
53
+ # Load DiT model
54
+ dit_checkpoint_path, dit_config_path = load_custom_model_from_hf(
55
+ "Plachta/Seed-VC",
56
+ "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
57
+ "config_dit_mel_seed_uvit_whisper_small_wavenet.yml"
58
+ )
59
+ config = yaml.safe_load(open(dit_config_path, 'r'))
60
+ model_params = recursive_munch(config['model_params'])
61
+ model = build_model(model_params, stage='DiT')
62
+
63
+ # Debug: Print model keys to identify correct key
64
+ print(f"[INFO] | Model keys: {model.keys()}")
65
+
66
+ hop_length = config['preprocess_params']['spect_params']['hop_length']
67
+ sr = config['preprocess_params']['sr']
68
 
69
+ # Load DiT checkpoints
70
+ model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False)
71
+ for key in model:
72
+ model[key].eval()
73
+ model[key].to(device)
74
+ print("[INFO] | DiT model loaded and set to eval mode.")
75
+
76
+ model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
77
+
78
+ # Ensure 'CAMPPlus' is correctly imported and defined
79
+ try:
80
+ campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
81
+ print("[INFO] | CAMPPlus model instantiated.")
82
+ except NameError:
83
+ print("[ERROR] | CAMPPlus is not defined. Please check the import path and ensure CAMPPlus is correctly defined.")
84
+ raise
85
+
86
+ # Set weights_only=True for security
87
+ campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
88
+ campplus_state = torch.load(campplus_ckpt_path, map_location="cpu", weights_only=True)
89
+ campplus_model.load_state_dict(campplus_state)
90
+ campplus_model.eval()
91
+ campplus_model.to(device)
92
+ print("[INFO] | CAMPPlus model loaded, set to eval mode, and moved to CPU.")
93
+
94
+ # Load BigVGAN model
95
+ bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
96
+ bigvgan_model.remove_weight_norm()
97
+ bigvgan_model = bigvgan_model.eval().to(device)
98
+ print("[INFO] | BigVGAN model loaded, weight norm removed, set to eval mode, and moved to CPU.")
99
+
100
+ # Load FAcodec model
101
+ ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
102
+ codec_config = yaml.safe_load(open(config_path))
103
+ codec_model_params = recursive_munch(codec_config['model_params'])
104
+ codec_encoder = build_model(codec_model_params, stage="codec")
105
+ ckpt_params = torch.load(ckpt_path, map_location="cpu", weights_only=True)
106
+ for key in codec_encoder:
107
+ codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
108
+ codec_encoder = {k: v.eval().to(device) for k, v in codec_encoder.items()}
109
+ print("[INFO] | FAcodec model loaded, set to eval mode, and moved to CPU.")
110
+
111
+ # Load Whisper model with float32 and compatible size
112
+ whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
113
+ whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float32).to(device)
114
+ del whisper_model.decoder # Remove decoder as it's not used
115
+ whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
116
+ print(f"[INFO] | Whisper model '{whisper_name}' loaded with dtype {whisper_model.dtype} and moved to CPU.")
117
+
118
+ # Generate mel spectrograms with optimized parameters
119
+ mel_fn_args = {
120
+ "n_fft": 1024,
121
+ "win_size": 1024,
122
+ "hop_size": 256,
123
+ "num_mels": 80,
124
+ "sampling_rate": sr,
125
+ "fmin": 0,
126
+ "fmax": None,
127
+ "center": False
128
+ }
129
+ to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
130
+
131
+ # Load F0 conditioned model
132
+ dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf(
133
+ "Plachta/Seed-VC",
134
+ "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
135
+ "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml"
136
+ )
137
+ config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
138
+ model_params_f0 = recursive_munch(config_f0['model_params'])
139
+ model_f0 = build_model(model_params_f0, stage='DiT')
140
 
141
+ hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
142
+ sr_f0 = config_f0['preprocess_params']['sr']
 
143
 
144
+ # Load F0 model checkpoints
145
+ model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path_f0, load_only_params=True, ignore_modules=[], is_distributed=False)
146
+ for key in model_f0:
147
+ model_f0[key].eval()
148
+ model_f0[key].to(device)
149
+ print("[INFO] | F0 conditioned DiT model loaded and set to eval mode.")
150
 
151
+ model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
152
+
153
+ # Load F0 extractor
154
+ model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
155
+ rmvpe = RMVPE(model_path, is_half=False, device=device)
156
+ print("[INFO] | RMVPE model loaded and moved to CPU.")
157
+
158
+ mel_fn_args_f0 = {
159
+ "n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
160
+ "win_size": config_f0['preprocess_params']['spect_params']['win_length'],
161
+ "hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
162
+ "num_mels": 80, # Ensure this matches the primary model
163
+ "sampling_rate": sr_f0,
164
+ "fmin": 0,
165
+ "fmax": None,
166
+ "center": False
167
+ }
168
+ to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
169
+
170
+ # Load BigVGAN 44kHz model
171
+ bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
172
+ bigvgan_44k_model.remove_weight_norm()
173
+ bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
174
+ print("[INFO] | BigVGAN 44kHz model loaded, weight norm removed, set to eval mode, and moved to CPU.")
175
+
176
+ # ----------------------------
177
+ # Helper Functions
178
+ # ----------------------------
179
+
180
+ def adjust_f0_semitones(f0_sequence, n_semitones):
181
+ factor = 2 ** (n_semitones / 12)
182
+ return f0_sequence * factor
183
+
184
+ def crossfade(chunk1, chunk2, overlap):
185
+ fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
186
+ fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
187
+ chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
188
+ return chunk2
189
+
190
+ # ----------------------------
191
+ # Voice Conversion Function
192
+ # ----------------------------
193
+
194
+ @torch.no_grad()
195
+ @torch.inference_mode()
196
+ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
197
+ print("[INFO] | Voice conversion started.")
198
+
199
+ inference_module = model if not f0_condition else model_f0
200
+ mel_fn = to_mel if not f0_condition else to_mel_f0
201
+ bigvgan_fn = bigvgan_model if not f0_condition else bigvgan_44k_model
202
+ sr_current = 22050 if not f0_condition else 44100
203
+ hop_length_current = 256 if not f0_condition else 512
204
+ max_context_window = sr_current // hop_length_current * 30
205
+ overlap_wave_len = 16 * hop_length_current
206
+ bitrate = "320k"
207
+
208
+ # Load audio using librosa
209
+ print("[INFO] | Loading source and reference audio.")
210
+ source_audio, _ = librosa.load(source, sr=sr_current)
211
+ ref_audio, _ = librosa.load(target, sr=sr_current)
212
+
213
+ # Clip reference audio to 25 seconds
214
+ ref_audio = ref_audio[:sr_current * 25]
215
+ print(f"[INFO] | Source audio length: {len(source_audio)/sr_current:.2f}s, Reference audio length: {len(ref_audio)/sr_current:.2f}s")
216
+
217
+ # Convert audio to tensors
218
+ source_audio_tensor = torch.tensor(source_audio).unsqueeze(0).float().to(device)
219
+ ref_audio_tensor = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
220
+
221
+ # Resample to 16kHz
222
+ ref_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, 16000)
223
+ converted_waves_16k = torchaudio.functional.resample(source_audio_tensor, sr_current, 16000)
224
+
225
+ # Generate Whisper features
226
+ print("[INFO] | Generating Whisper features for source audio.")
227
+ if converted_waves_16k.size(-1) <= 16000 * 30:
228
+ alt_inputs = whisper_feature_extractor(
229
+ [converted_waves_16k.squeeze(0).cpu().numpy()],
230
+ return_tensors="pt",
231
+ return_attention_mask=True,
232
+ sampling_rate=16000
233
+ )
234
+ alt_input_features = whisper_model._mask_input_features(
235
+ alt_inputs.input_features, attention_mask=alt_inputs.attention_mask
236
+ ).to(device)
237
+ alt_outputs = whisper_model.encoder(
238
+ alt_input_features.to(torch.float32),
239
+ head_mask=None,
240
+ output_attentions=False,
241
+ output_hidden_states=False,
242
+ return_dict=True
243
  )
244
+ S_alt = alt_outputs.last_hidden_state.to(torch.float32)
245
+ S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
246
+ print(f"[INFO] | S_alt shape: {S_alt.shape}")
247
+ else:
248
+ # Process in chunks
249
+ print("[INFO] | Processing source audio in chunks.")
250
+ overlapping_time = 5 # seconds
251
+ chunk_size = 16000 * 30 # 30 seconds
252
+ overlap_size = 16000 * overlapping_time
253
+ S_alt_list = []
254
+ buffer = None
255
+ traversed_time = 0
256
+ total_length = converted_waves_16k.size(-1)
257
+
258
+ while traversed_time < total_length:
259
+ if buffer is None:
260
+ chunk = converted_waves_16k[:, traversed_time:traversed_time + chunk_size]
261
+ else:
262
+ chunk = torch.cat([
263
+ buffer,
264
+ converted_waves_16k[:, traversed_time:traversed_time + chunk_size - overlap_size]
265
+ ], dim=-1)
266
+ alt_inputs = whisper_feature_extractor(
267
+ [chunk.squeeze(0).cpu().numpy()],
268
+ return_tensors="pt",
269
+ return_attention_mask=True,
270
+ sampling_rate=16000
271
+ )
272
+ alt_input_features = whisper_model._mask_input_features(
273
+ alt_inputs.input_features, attention_mask=alt_inputs.attention_mask
274
+ ).to(device)
275
+ alt_outputs = whisper_model.encoder(
276
+ alt_input_features.to(torch.float32),
277
+ head_mask=None,
278
+ output_attentions=False,
279
+ output_hidden_states=False,
280
+ return_dict=True
281
+ )
282
+ S_chunk = alt_outputs.last_hidden_state.to(torch.float32)
283
+ S_chunk = S_chunk[:, :chunk.size(-1) // 320 + 1]
284
+ print(f"[INFO] | Processed chunk with S_chunk shape: {S_chunk.shape}")
285
+
286
+ if traversed_time == 0:
287
+ S_alt_list.append(S_chunk)
288
+ else:
289
+ skip_frames = 50 * overlapping_time
290
+ S_alt_list.append(S_chunk[:, skip_frames:])
291
+
292
+ buffer = chunk[:, -overlap_size:]
293
+ traversed_time += chunk_size - overlap_size
294
+
295
+ S_alt = torch.cat(S_alt_list, dim=1)
296
+ print(f"[INFO] | Final S_alt shape after chunk processing: {S_alt.shape}")
297
+
298
+ # Original Whisper features
299
+ print("[INFO] | Generating Whisper features for reference audio.")
300
+ ori_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, 16000)
301
+ ori_inputs = whisper_feature_extractor(
302
+ [ori_waves_16k.squeeze(0).cpu().numpy()],
303
+ return_tensors="pt",
304
+ return_attention_mask=True,
305
+ sampling_rate=16000
306
+ )
307
+ ori_input_features = whisper_model._mask_input_features(
308
+ ori_inputs.input_features, attention_mask=ori_inputs.attention_mask
309
+ ).to(device)
310
+ ori_outputs = whisper_model.encoder(
311
+ ori_input_features.to(torch.float32),
312
+ head_mask=None,
313
+ output_attentions=False,
314
+ output_hidden_states=False,
315
+ return_dict=True
316
+ )
317
+ S_ori = ori_outputs.last_hidden_state.to(torch.float32)
318
+ S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
319
+ print(f"[INFO] | S_ori shape: {S_ori.shape}")
320
+
321
+ # Generate mel spectrograms
322
+ print("[INFO] | Generating mel spectrograms.")
323
+ mel = mel_fn(source_audio_tensor.float())
324
+ mel2 = mel_fn(ref_audio_tensor.float())
325
+ print(f"[INFO] | Mel spectrogram shapes: mel={mel.shape}, mel2={mel2.shape}")
326
+
327
+ # Length adjustment
328
+ target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
329
+ target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
330
+ print(f"[INFO] | Target lengths: {target_lengths.item()}, {target2_lengths.item()}")
331
+
332
+ # Extract style features
333
+ print("[INFO] | Extracting style features from reference audio.")
334
+ feat2 = torchaudio.compliance.kaldi.fbank(
335
+ ref_waves_16k,
336
+ num_mel_bins=80,
337
+ dither=0,
338
+ sample_frequency=16000
339
+ )
340
+ feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
341
+ style2 = campplus_model(feat2.unsqueeze(0))
342
+ print(f"[INFO] | Style2 shape: {style2.shape}")
343
+
344
+ # F0 Conditioning
345
+ if f0_condition:
346
+ print("[INFO] | Performing F0 conditioning.")
347
+ F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
348
+ F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)
349
+
350
+ F0_ori = torch.from_numpy(F0_ori).to(device)[None].float()
351
+ F0_alt = torch.from_numpy(F0_alt).to(device)[None].float()
352
+
353
+ voiced_F0_ori = F0_ori[F0_ori > 1]
354
+ voiced_F0_alt = F0_alt[F0_alt > 1]
355
+
356
+ log_f0_alt = torch.log(F0_alt + 1e-5)
357
+ voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
358
+ voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
359
+
360
+ median_log_f0_ori = torch.median(voiced_log_f0_ori)
361
+ median_log_f0_alt = torch.median(voiced_log_f0_alt)
362
+
363
+ # Shift F0 levels
364
+ shifted_log_f0_alt = log_f0_alt.clone()
365
+ if auto_f0_adjust:
366
+ shifted_log_f0_alt[F0_alt > 1] = (
367
+ log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
368
+ )
369
+ shifted_f0_alt = torch.exp(shifted_log_f0_alt)
370
+ if pitch_shift != 0:
371
+ shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
372
+ print("[INFO] | F0 conditioning completed.")
373
+ else:
374
+ F0_ori = None
375
+ F0_alt = None
376
+ shifted_f0_alt = None
377
+ print("[INFO] | F0 conditioning not applied.")
378
+
379
+ # Length Regulation
380
+ print("[INFO] | Applying length regulation.")
381
+ cond, _, _, _, _ = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
382
+ prompt_condition, _, _, _, _ = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
383
+ print(f"[INFO] | Cond shape: {cond.shape}, Prompt condition shape: {prompt_condition.shape}")
384
+
385
+ # Initialize variables for audio generation
386
+ max_source_window = max_context_window - mel2.size(2)
387
+ processed_frames = 0
388
+ generated_wave_chunks = []
389
+
390
+ print("[INFO] | Starting inference and audio generation.")
391
+
392
+ while processed_frames < cond.size(1):
393
+ chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
394
+ is_last_chunk = processed_frames + max_source_window >= cond.size(1)
395
+ cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
396
+
397
+ # Perform inference
398
+ vc_target = inference_module.cfm.inference(
399
+ cat_condition,
400
+ torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
401
+ mel2,
402
+ style2,
403
+ None,
404
+ diffusion_steps,
405
+ inference_cfg_rate=inference_cfg_rate
406
+ )
407
+ vc_target = vc_target[:, :, mel2.size(2):]
408
+ print(f"[INFO] | vc_target shape: {vc_target.shape}")
409
+
410
+ # Generate waveform using BigVGAN
411
+ vc_wave = bigvgan_fn(vc_target.float())[0]
412
+ print(f"[INFO] | vc_wave shape: {vc_wave.shape}")
413
+
414
+ # Handle the generated waveform
415
+ output_wave = vc_wave[0].cpu().numpy()
416
+ generated_wave_chunks.append(output_wave)
417
+
418
+ # Fix: Ensure processed_frames increments correctly to avoid infinite loop
419
+ processed_frames += vc_target.size(2) # Changed from 'vc_target.size(2) - 16' to 'vc_target.size(2)'
420
+ print(f"[INFO] | Processed frames updated to: {processed_frames}")
421
+
422
+ # Concatenate all generated wave chunks
423
+ final_audio = np.concatenate(generated_wave_chunks).astype(np.float32)
424
+
425
+ # Normalize the audio to ensure it's within [-1.0, 1.0]
426
+ max_val = np.max(np.abs(final_audio))
427
+ if max_val > 1.0:
428
+ final_audio = final_audio / max_val
429
+ print("[INFO] | Final audio normalized.")
430
+
431
+ # Save the audio to a temporary WAV file
432
+ print("[INFO] | Saving final audio to a temporary WAV file.")
433
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
434
+ sf.write(tmp_file.name, final_audio, sr_current, format='WAV')
435
+ temp_file_path = tmp_file.name
436
+
437
+ print(f"[INFO] | Final audio saved to {temp_file_path}")
438
+
439
+ return temp_file_path
440
+
441
+ # ----------------------------
442
+ # Bypass GPU Initialization Error (KEEP THIS FUNCTION AND NEVER DELETE, OTHERWISE IT WILL ERROR DUE TO NOT AT LEAST ONE FUNCTION HAVING USE OF GPU)
443
+ # ----------------------------
444
 
445
+ @spaces.GPU(duration=15)
446
+ def gpu():
447
+ return
448
+
449
+ # ----------------------------
450
+ # Gradio Interface
451
+ # ----------------------------
452
+
453
+ description = (
454
+ "🪄 **Voice Conversion Tool**\n\n"
455
+ "Upload your **Source Audio** and **Reference Audio** files to perform voice conversion. "
456
+ "Adjust the sliders and checkboxes to customize the conversion process."
 
 
 
 
 
 
 
 
 
 
 
457
  )
458
 
459
+ inputs = [
460
+ gr.Audio(type="filepath", label="Source Audio"),
461
+ gr.Audio(type="filepath", label="Reference Audio"),
462
+ gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Diffusion Steps", info="Default is 25. Use 50-100 for best quality."),
463
+ gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjustment", info="<1.0 to speed up speech, >1.0 to slow down speech."),
464
+ gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="Has a subtle influence."),
465
+ gr.Checkbox(label="Use F0 Conditioned Model", value=False, info="Must be enabled for singing voice conversion."),
466
+ gr.Checkbox(label="Auto F0 Adjustment", value=True, info="Roughly adjusts F0 to match target voice. Only works when 'Use F0 Conditioned Model' is enabled."),
467
+ gr.Slider(label='Pitch Shift (semitones)', minimum=-12, maximum=12, step=1, value=0, info="Pitch shift in semitones. Only works when 'Use F0 Conditioned Model' is enabled."),
468
+ ]
469
+
470
+ # Set outputs to a single gr.Audio component with type="filepath"
471
+ outputs = gr.Audio(label="Full Output Audio", type="filepath")
472
+
473
+ gr.Interface(
474
+ fn=voice_conversion,
475
+ description=description,
476
+ inputs=inputs,
477
+ outputs=outputs,
478
+ title="Seed Voice Conversion",
479
+ cache_examples=False,
480
+ allow_flagging="never"
481
+ ).launch(share=True)