Spaces:
Sleeping
Sleeping
Staticaliza
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,12 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
from auto_gptq import AutoGPTQForCausalLM
|
5 |
|
6 |
-
# Model identifier
|
7 |
-
model_id = "xmadai/Mistral-Large-Instruct-2407-xMADai-INT4"
|
8 |
-
|
9 |
-
# Load the tokenizer
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False, trust_remote_code=True)
|
11 |
-
|
12 |
-
# Removed the invalid decorator
|
13 |
class ModelWrapper:
|
14 |
def __init__(self):
|
15 |
self.model = None # Model will be loaded when GPU is allocated
|
16 |
|
17 |
-
@spaces.GPU
|
18 |
def generate(self, prompt):
|
19 |
if self.model is None:
|
20 |
# Load the model when GPU is allocated
|
@@ -23,32 +15,28 @@ class ModelWrapper:
|
|
23 |
device_map='auto',
|
24 |
trust_remote_code=True,
|
25 |
)
|
|
|
26 |
|
27 |
# Tokenize the input prompt
|
28 |
inputs = tokenizer(prompt, return_tensors='pt').to('cuda')
|
29 |
|
30 |
-
#
|
31 |
-
|
|
|
|
|
|
|
32 |
**inputs,
|
|
|
33 |
do_sample=True,
|
34 |
-
max_new_tokens=512
|
35 |
)
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
# Instantiate the model wrapper
|
42 |
-
model_wrapper = ModelWrapper()
|
43 |
-
|
44 |
-
# Create the Gradio interface
|
45 |
-
interface = gr.Interface(
|
46 |
-
fn=model_wrapper.generate,
|
47 |
-
inputs=gr.Textbox(lines=5, label="Input Prompt"),
|
48 |
-
outputs=gr.Textbox(label="Generated Text"),
|
49 |
-
title="Mistral-Large-Instruct-2407 Text Completion",
|
50 |
-
description="Enter a prompt and receive a text completion using the Mistral-Large-Instruct-2407 INT4 model."
|
51 |
-
)
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import TextIteratorStreamer
|
3 |
+
import threading
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
class ModelWrapper:
|
6 |
def __init__(self):
|
7 |
self.model = None # Model will be loaded when GPU is allocated
|
8 |
|
9 |
+
@spaces.GPU
|
10 |
def generate(self, prompt):
|
11 |
if self.model is None:
|
12 |
# Load the model when GPU is allocated
|
|
|
15 |
device_map='auto',
|
16 |
trust_remote_code=True,
|
17 |
)
|
18 |
+
self.model.eval()
|
19 |
|
20 |
# Tokenize the input prompt
|
21 |
inputs = tokenizer(prompt, return_tensors='pt').to('cuda')
|
22 |
|
23 |
+
# Set up the streamer
|
24 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
25 |
+
|
26 |
+
# Prepare generation arguments
|
27 |
+
generation_kwargs = dict(
|
28 |
**inputs,
|
29 |
+
streamer=streamer,
|
30 |
do_sample=True,
|
31 |
+
max_new_tokens=512,
|
32 |
)
|
33 |
|
34 |
+
# Start generation in a separate thread to enable streaming
|
35 |
+
thread = threading.Thread(target=self.model.generate, kwargs=generation_kwargs)
|
36 |
+
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Yield generated text in real-time
|
39 |
+
generated_text = ""
|
40 |
+
for new_text in streamer:
|
41 |
+
generated_text += new_text
|
42 |
+
yield generated_text
|