import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = "transfer_learning_xception.keras" model = tf.keras.models.load_model(model_path) # Define the core prediction function def predict_dog(image): # Preprocess image print(type(image)) image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale image = np.array(image) image = np.expand_dims(image, axis=0) # same as image[None, ...] # Predict prediction = model.predict(image) # No need to apply sigmoid, as the output layer already uses softmax # Convert the probabilities to rounded values prediction = np.round(prediction, 2) # Separate the probabilities for each class p_germanshepherd = prediction[0][0] p_goldenretriever = prediction[0][1] p_husky = prediction[0][2] p_poodle = prediction[0][3] p_rottwiler = prediction[0][4] p_shibainu = prediction[0][5] return {'german shepherd': p_germanshepherd, 'goldenretriever': p_goldenretriever, 'husky': p_husky, 'poodle': p_poodle, 'rottweiler': p_rottwiler, 'shiba inu': p_shibainu} # Create the Gradio interface input_image = gr.Image() iface = gr.Interface( fn=predict_dog, inputs=input_image, outputs=gr.Label(), examples=["img/german shepherd_1.jpg", "img/german shepherd_24.jpg", "img/german shepherd_36.jpg", "img/german shepherd_84.jpg", "img/golden retriever_10.jpg", "img/golden retriever_23.jpg", "img/golden retriever_28.jpg", "img/golden retriever_75.jpg", "img/husky_4.jpg", "img/husky_12.jpg", "img/husky_21.jpg", "img/husky_77.jpg", "img/husky_123.jpg", "img/poodle13.jpg", "img/poodle32.jpg", "img/poodle36.jpg", "img/poodle100.jpg", "img/rottwiler_1.jpg", "img/rottwiler_12.jpg", "img/rottwiler_52.jpg", "img/rottwiler_55.jpg", "img/rottwiler_167.jpg", "img/shiba inu_2.jpg", "img/shiba inu_45.jpg", "img/shiba inu_115.jpg", "img/shiba inu_161.jpg"], description="Dogs" ) iface.launch()