marvin / app.py
StephaneBah's picture
Update app.py
88ef79d verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from diffusers import DiffusionPipeline
import torch
# Load the models and tokenizers
translation_model_name = "google/madlad400-3b-mt"
translation_model = AutoModelForSeq2SeqLM.from_pretrained(translation_model_name)
translation_tokenizer = AutoTokenizer.from_pretrained(translation_model_name)
transcription_model = "chrisjay/fonxlsr"
diffusion_model_name = "stabilityai/stable-diffusion-xl-base-1.0"
diffusion_pipeline = DiffusionPipeline.from_pretrained(diffusion_model_name, torch_dtype=torch.float16)
diffusion_pipeline = diffusion_pipeline.to("cuda")
# Define the translation and transcription pipeline
translation_pipeline = pipeline("translation", model=translation_model, tokenizer=translation_tokenizer, device_map="auto")
transcription_pipeline = pipeline("automatic-speech-recognition", model=transcription_model, device_map="auto")
# Define the function for transcribing and translating audio in Fon
def transcribe_and_translate_audio_fon(audio_path, num_images=1):
# Transcribe the audio to Fon using the transcription pipeline
transcription_fon = transcription_pipeline(audio_path)["text"]
# Translate the Fon transcription to French using the translation pipeline
translation_result = translation_pipeline(transcription_fon, source_lang="fon", target_lang="fr")
translation_fr = translation_result[0]["translation_text"]
# Generate images based on the French translation using the diffusion model
images = diffusion_pipeline(translation_fr, num_images_per_prompt=num_images)["images"]
return images
# Create a Gradio interface
def process_audio(audio, num_images):
images = transcribe_and_translate_audio_fon(audio, num_images)
return images
# Define Gradio interface components
audio_input = gr.Audio(source="upload", type="filepath", label="Upload an audio file")
image_output = gr.Gallery(label="Generated Images").style(grid=2)
num_images_input = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of Images")
# Launch Gradio interface
interface = gr.Interface(
fn=process_audio,
inputs=[audio_input, num_images_input],
outputs=image_output,
title="Fon Audio to Image Translation",
description="Upload an audio file in Fon, and the app will transcribe, translate to French, and generate related images."
)
interface.launch()