File size: 3,111 Bytes
bc736f8 97fd8dc bc736f8 b640e62 49d7053 bc736f8 49d7053 a63bdf7 bc736f8 9ec122f 9e07c40 9ec122f bc736f8 3a36dd7 896fad4 9817c7c 5188c19 bc736f8 5188c19 fe55d4b 5188c19 fe55d4b 5188c19 fe55d4b 5188c19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import whisper
from pytube import YouTube
import gradio as gr
import os
import re
import logging
logging.basicConfig(level=logging.INFO)
model = whisper.load_model("base")
def get_text(url):
#try:
if url != '':
output_text_transcribe = ''
yt = YouTube(url)
#video_length = yt.length
#if video_length < 5400:
video = yt.streams.filter(only_audio=True).first()
out_file=video.download(output_path=".")
file_stats = os.stat(out_file)
logging.info("Size of audio file: %s", str(out_file.st_size))
base, ext = os.path.splitext(out_file)
new_file = base+'.mp3'
os.rename(out_file, new_file)
a = new_file
result = model.transcribe(a)
return result['text'].strip()
#else:
# return "Videos for transcription on this space are limited to 1.5 hours. Sorry about this limit but some joker thought they could stop this tool from working by transcribing many extremely long videos. Please visit https://steve.digital to contact me about this space."
#finally:
# raise gr.Error("Exception: There was a problem transcribing the audio.")
def get_summary(article):
#try:
first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5])
b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False)
b = b[0]['summary_text'].replace(' .', '.').strip()
return b
#finally:
#raise gr.Error("Exception: There was a problem summarizing the transcript.")
with gr.Blocks() as demo:
gr.Markdown("<h1><center>Free Fast YouTube URL Video-to-Text using <a href=https://openai.com/blog/whisper/ target=_blank>OpenAI's Whisper</a> Model</center></h1>")
#gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.</center>")
gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video.</center>")
gr.Markdown("<center><b>'Whisper is a neural net that approaches human level robustness and accuracy on English speech recognition.'</b></center>")
gr.Markdown("<center>Transcription takes 5-10 seconds per minute of the video (bad audio/hard accents slow it down a bit). #patience<br />If you have time while waiting, check out my <a href=https://www.artificial-intelligence.blog target=_blank>AI blog</a> (opens in new tab).</center>")
input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL')
result_button_transcribe = gr.Button('1. Transcribe')
output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript')
#result_button_summary = gr.Button('2. Create Summary')
#output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary')
result_button_transcribe.click(get_text, inputs = input_text_url, outputs = output_text_transcribe)
#result_button_summary.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary)
demo.queue(default_enabled = True).launch(debug = True) |