import whisper from pytube import YouTube import gradio as gr import os import re import logging logging.basicConfig(level=logging.INFO) model = whisper.load_model("base") def get_text(url): try: if url != '': output_text_transcribe = '' yt = YouTube(url) #video_length = yt.length #if video_length < 5400: video = yt.streams.filter(only_audio=True).first() out_file=video.download(output_path=".") base, ext = os.path.splitext(out_file) new_file = base+'.mp3' os.rename(out_file, new_file) a = new_file logging.info("Size of audio file: %s", len(a)) result = model.transcribe(a) return result['text'].strip() #else: # return "Videos for transcription on this space are limited to 1.5 hours. Sorry about this limit but some joker thought they could stop this tool from working by transcribing many extremely long videos. Please visit https://steve.digital to contact me about this space." finally: raise gr.Error("Exception: There was a problem transcribing the audio.") def get_summary(article): #try: first_sentences = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5]) b = summarizer(first_sentences, min_length = 20, max_length = 120, do_sample = False) b = b[0]['summary_text'].replace(' .', '.').strip() return b #finally: #raise gr.Error("Exception: There was a problem summarizing the transcript.") with gr.Blocks() as demo: gr.Markdown("