import whisper from pytube import YouTube from transformers import pipeline import gradio as gr import os model = whisper.load_model("base") summarizer = pipeline("summarization") def get_audio(url): yt = YouTube(url) video = yt.streams.filter(only_audio=True).first() out_file=video.download(output_path=".") base, ext = os.path.splitext(out_file) new_file = base+'.mp3' os.rename(out_file, new_file) a = new_file return a def get_text(url): result = model.transcribe(get_audio(url)) return result['text'] def get_summary(article): print(article) b = summarizer(article, min_length=20, max_length=30, do_sample=False) print(b) b = b[0]['summary_text'] return b with gr.Blocks() as demo: gr.Markdown("

Free YouTube URL Video to Text using OpenAI's Whisper Model

") gr.Markdown("
Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.
") input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL') result_button_transcribe = gr.Button('1. Transcribe') output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript') result_button_summary = gr.Button('2. Create Summary') output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary') result_button_transcribe.click(get_text, inputs=input_text_url, outputs=output_text_transcribe) result_button_summary.click(get_summary, inputs=output_text_transcribe, outputs=output_text_summary) demo.launch(debug = True)