|
import argparse |
|
from itertools import chain |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import LlamaConfig, DynamicCache |
|
|
|
from midi_model import MIDIModel, config_name_list, MIDIModelConfig |
|
|
|
|
|
class MIDIModelBase(nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.net = model.net |
|
|
|
def forward(self, x, past_kv): |
|
cache = DynamicCache.from_legacy_cache(past_kv) |
|
x = self.net.embed_tokens(x) |
|
x = x.sum(dim=-2) |
|
x = self.net.forward(inputs_embeds=x, |
|
past_key_values=cache, |
|
use_cache=True) |
|
return x.last_hidden_state, cache.to_legacy_cache() |
|
|
|
|
|
class MIDIModelToken(nn.Module): |
|
def __init__(self, model): |
|
super().__init__() |
|
self.net_token = model.net_token |
|
self.lm_head = model.lm_head |
|
|
|
def forward(self, hidden_state, x, past_kv): |
|
cache = DynamicCache.from_legacy_cache(past_kv) |
|
x = self.net_token.embed_tokens(x) |
|
x = torch.cat([hidden_state, x], dim=1) |
|
hidden_state = x |
|
hidden_state = self.net_token.forward(inputs_embeds=hidden_state, |
|
past_key_values=cache, |
|
use_cache=True).last_hidden_state |
|
return self.lm_head(hidden_state), cache.to_legacy_cache() |
|
|
|
|
|
def export_onnx(model, model_inputs, input_names, output_names, dynamic_axes, meta_data, path): |
|
import onnx |
|
from onnxsim import simplify |
|
torch.onnx.export(model, |
|
model_inputs, |
|
path, |
|
export_params=True, |
|
opset_version=14, |
|
do_constant_folding=True, |
|
input_names=input_names, |
|
output_names=output_names, |
|
verbose=True, |
|
dynamic_axes=dynamic_axes |
|
) |
|
onnx_model = onnx.load(path) |
|
model_simp, check = simplify(onnx_model) |
|
assert check, "Simplified ONNX model could not be validated" |
|
for k, v in meta_data.items(): |
|
meta = model_simp.metadata_props.add() |
|
meta.key, meta.value = k, str(v) |
|
onnx.save(model_simp, path) |
|
print('finished exporting onnx') |
|
|
|
|
|
def get_past_kv(config: LlamaConfig, batch_size=1, past_seq_len=16, torch_dtype= torch.float32, device="cpu"): |
|
head_size = config.hidden_size // config.num_attention_heads |
|
past_kv = [ |
|
( |
|
torch.rand(batch_size, config.num_attention_heads, |
|
past_seq_len, head_size, dtype=torch_dtype, device=device), |
|
torch.rand(batch_size, config.num_attention_heads, |
|
past_seq_len, head_size, dtype=torch_dtype, device=device), |
|
) |
|
for _ in range(config.num_hidden_layers) |
|
] |
|
input_names = list( |
|
chain.from_iterable( |
|
(f"past_key_values.{i}.key", f"past_key_values.{i}.value") for i in |
|
range(config.num_hidden_layers) |
|
) |
|
) |
|
output_names = list( |
|
chain.from_iterable((f"present.{i}.key", f"present.{i}.value") for i in range(config.num_hidden_layers)) |
|
) |
|
return past_kv, input_names, output_names |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--ckpt", type=str, default="model.ckpt", help="load ckpt" |
|
) |
|
parser.add_argument( |
|
"--config", type=str, default="tv2o-medium", choices=config_name_list, help="model config" |
|
) |
|
parser.add_argument( |
|
"--lora", type=str, default="", help="load lora" |
|
) |
|
parser.add_argument( |
|
"--model-base-out", type=str, default="model_base.onnx", help="model base output path" |
|
) |
|
parser.add_argument( |
|
"--model-token-out", type=str, default="model_token.onnx", help="model token output path" |
|
) |
|
opt = parser.parse_args() |
|
config = MIDIModelConfig.from_name(opt.config) |
|
tokenizer = config.tokenizer |
|
model = MIDIModel(config).to(device="cpu") |
|
ckpt = torch.load(opt.ckpt, map_location="cpu") |
|
state_dict = ckpt.get("state_dict", ckpt) |
|
model.load_state_dict(state_dict, strict=False) |
|
if opt.lora != "": |
|
model.load_merge_lora(opt.lora) |
|
model.eval() |
|
model_base = MIDIModelBase(model).eval() |
|
model_token = MIDIModelToken(model).eval() |
|
meta_data = {"config_name": opt.config, "config": config} |
|
past_kv_shape = {0: "batch", 2: "past_seq"} |
|
present_kv_shape = {0: "batch", 2: "present_seq"} |
|
with torch.no_grad(): |
|
dynamic_axes = { |
|
"x": {0: "batch", 1: "mid_seq", 2: "token_seq"}, |
|
"hidden": {0: "batch", 1: "mid_seq"} |
|
} |
|
x = torch.randint(tokenizer.vocab_size, (1, 16, tokenizer.max_token_seq), dtype=torch.int64, device="cpu") |
|
past_kv, input_names, output_names= get_past_kv(config.net_config, past_seq_len=16, |
|
torch_dtype=torch.float32) |
|
for name in input_names: |
|
dynamic_axes[name] = past_kv_shape |
|
for name in output_names: |
|
dynamic_axes[name] = present_kv_shape |
|
input_names = [ "x"] + input_names |
|
output_names = ["hidden"] + output_names |
|
export_onnx(model_base, (x, past_kv), |
|
input_names, output_names, dynamic_axes, meta_data, opt.model_base_out) |
|
|
|
dynamic_axes = { |
|
"x": {0: "batch", 1: "token_seq"}, |
|
"hidden": {0: "batch", 1: "states"}, |
|
"y": {0: "batch", 1: "token_seq1"} |
|
} |
|
hidden = torch.randn(1, 1, config.n_embd, device="cpu") |
|
x = torch.randint(tokenizer.vocab_size, (1, tokenizer.max_token_seq //2), dtype=torch.int64, device="cpu") |
|
past_kv, input_names, output_names = get_past_kv(config.net_token_config, |
|
past_seq_len=(tokenizer.max_token_seq // 2), |
|
torch_dtype=torch.float32) |
|
for name in input_names: |
|
dynamic_axes[name] = past_kv_shape |
|
for name in output_names: |
|
dynamic_axes[name] = present_kv_shape |
|
input_names = ["hidden", "x"] + input_names |
|
output_names = ["y"] + output_names |
|
export_onnx(model_token, (hidden, x, past_kv), |
|
input_names, output_names, dynamic_axes, meta_data, opt.model_token_out) |
|
|