Spaces:
Runtime error
Runtime error
File size: 8,760 Bytes
9f0d781 4a6c7b9 9f0d781 4a6c7b9 9f0d781 4a6c7b9 9f0d781 4a6c7b9 9f0d781 4a6c7b9 9f0d781 6e68989 9f0d781 4a6c7b9 9f0d781 4a6c7b9 9f0d781 6e68989 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
import pandas as pd
import json
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS, LEADERBOARD_CSS
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
from datetime import datetime, timezone
LAST_UPDATED = "Nov 22th 2024"
column_names = {
"MODEL": "Model",
"Avg. WER": "Average WER β¬οΈ",
"RTFx": "RTFx β¬οΈοΈ",
"AMI WER": "AMI",
"Earnings22 WER": "Earnings22",
"Gigaspeech WER": "Gigaspeech",
"LS Clean WER": "LS Clean",
"LS Other WER": "LS Other",
"SPGISpeech WER": "SPGISpeech",
"Tedlium WER": "Tedlium",
"Voxpopuli WER": "Voxpopuli",
}
whisper_column_names = {
"MODEL": "Model",
"Avg. WER": "Average WER β¬οΈ",
"RTFx": "RTFx β¬οΈοΈ",
"Backend": "Backend",
"Hardware": "Device",
"AMI WER": "AMI",
"Earnings22 WER": "Earnings22",
"Gigaspeech WER": "Gigaspeech",
"LS Clean WER": "LS Clean",
"LS Other WER": "LS Other",
"SPGISpeech WER": "SPGISpeech",
"Tedlium WER": "Tedlium",
"Voxpopuli WER": "Voxpopuli",
}
eval_queue_repo, requested_models, csv_results, whisper_eval_queue_repo, whisper_csv_results = load_all_info_from_dataset_hub()
if not csv_results.exists():
raise Exception(f"CSV file {csv_results} does not exist locally")
if not whisper_csv_results.exists():
raise Exception(f"CSV file {whisper_csv_results} does not exist locally")
# Get csv with data and parse columns
original_df = pd.read_csv(csv_results)
whisper_df = pd.read_csv(whisper_csv_results)
# Formats the columns
def formatter(x):
if type(x) is str:
x = x
else:
x = round(x, 2)
return x
for col in original_df.columns:
if col == "model":
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
else:
original_df[col] = original_df[col].apply(formatter) # For numerical values
whisper_df[col] = whisper_df[col].apply(formatter) # For numerical values
original_df.rename(columns=column_names, inplace=True)
original_df.sort_values(by='Average WER β¬οΈ', inplace=True)
whisper_df.rename(columns=whisper_column_names, inplace=True)
whisper_df.sort_values(by='Average WER β¬οΈ', inplace=True)
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
def request_model(model_text, chbcoco2017):
# Determine the selected checkboxes
dataset_selection = []
if chbcoco2017:
dataset_selection.append("ESB Datasets tests only")
if len(dataset_selection) == 0:
return styled_error("You need to select at least one dataset")
base_model_on_hub, error_msg = is_model_on_hub(model_text)
if not base_model_on_hub:
return styled_error(f"Base model '{model_text}' {error_msg}")
# Construct the output dictionary
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
required_datasets = ', '.join(dataset_selection)
eval_entry = {
"date": current_time,
"model": model_text,
"datasets_selected": required_datasets
}
# Prepare file path
DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
fn_datasets = '@ '.join(dataset_selection)
filename = model_text.replace("/","@") + "@@" + fn_datasets
if filename in requested_models:
return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.")
try:
filename_ext = filename + ".txt"
out_filepath = DIR_OUTPUT_REQUESTS / filename_ext
# Write the results to a text file
with open(out_filepath, "w") as f:
f.write(json.dumps(eval_entry))
upload_file(filename, out_filepath)
# Include file in the list of uploaded files
requested_models.append(filename)
# Remove the local file
out_filepath.unlink()
return styled_message("π€ Your request has been submitted and will be evaluated soon!</p>")
except Exception as e:
return styled_error(f"Error submitting request!")
with gr.Blocks(css=LEADERBOARD_CSS) as demo:
gr.HTML(BANNER, elem_id="banner")
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard", elem_id="od-benchmark-tab-table", id=0):
leaderboard_table = gr.components.Dataframe(
value=original_df,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
with gr.TabItem("π Whisper Model Leaderboard", elem_id="whisper-backends-tab", id=1):
gr.Markdown("## Whisper Model Performance Across Different Backends", elem_classes="markdown-text")
gr.Markdown("This table shows how different Whisper model implementations compare in terms of performance and speed.", elem_classes="markdown-text")
with gr.Row():
backend_filter = gr.Dropdown(
choices=["All"] + sorted(whisper_df["Backend"].unique().tolist()),
value="All",
label="Filter by Backend",
elem_id="backend-filter",
multiselect=True # Enable multiple selection
)
device_choices = ["All"] + sorted(whisper_df["Device"].unique().tolist()) if "Device" in whisper_df.columns else ["All"]
device_filter = gr.Dropdown(
choices=device_choices,
value="All",
label="Filter by Device",
elem_id="device-filter",
multiselect=True # Enable multiple selection
)
whisper_table = gr.components.Dataframe(
value=whisper_df,
datatype=TYPES,
elem_id="whisper-table",
interactive=False,
visible=True,
)
def filter_whisper_table(backends, devices):
filtered_df = whisper_df.copy()
# Handle backend filtering
if backends and "All" not in backends:
filtered_df = filtered_df[filtered_df["Backend"].isin(backends)]
# Handle device filtering
if devices and "All" not in devices and "Device" in filtered_df.columns:
filtered_df = filtered_df[filtered_df["Device"].isin(devices)]
return filtered_df
backend_filter.change(
filter_whisper_table,
inputs=[backend_filter, device_filter],
outputs=whisper_table
)
device_filter.change(
filter_whisper_table,
inputs=[backend_filter, device_filter],
outputs=whisper_table
)
with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=2):
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
with gr.TabItem("βοΈβ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=3):
with gr.Column():
gr.Markdown("# βοΈβ¨ Request results for a new model here!", elem_classes="markdown-text")
with gr.Column():
gr.Markdown("Select a dataset:", elem_classes="markdown-text")
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset", visible=False, value=True, interactive=False)
with gr.Column():
mdw_submission_result = gr.Markdown()
btn_submitt = gr.Button(value="π Request")
btn_submitt.click(request_model,
[model_name_textbox, chb_coco2017],
mdw_submission_result)
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_TEXT, lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True,
)
demo.launch(ssr_mode=False)
|